Zhou Baoliang, Zhou Dongming, Gao Hongwei, Yang Jie. Distributed Aperture Coherence-synthetic Radar Joint Antenna Gain Analysis[J]. Journal of Radars, 2017, 6(4): 332-339. doi: 10.12000/JR17055
Citation: XIA Jingyuan, YANG Zhixiong, ZHOU Zhixing, et al. A metalearning-based sparse aperture ISAR imaging method[J]. Journal of Radars, 2023, 12(4): 849–859. doi: 10.12000/JR23121

A Metalearning-based Sparse Aperture ISAR Imaging Method

DOI: 10.12000/JR23121
Funds:  The National Natural Science Foundation of China (62171448, 61921001, 62131020, 62022091), Distinguished Youth Science Foundation of Hunan Province (2022JJ10067)
More Information
  • Sparse Aperture-Inverse Synthetic Aperture Radar (SA-ISAR) imaging methods aim to reconstruct high-quality ISAR images from the corresponding incomplete ISAR echoes. The existing SA-ISAR imaging methods can be roughly divided into two categories: model-based and deep learning-based methods. Model-based SA-ISAR methods comprise physical ISAR imaging models based on explicit mathematical formulations. However, due to the high nonconvexity and ill-posedness of the SA-ISAR problem, model-based methods are often ineffective compared with deep learning-based methods. Meanwhile, the performance of the existing deep learning-based methods depends on the quality and quantity of the training data, which are neither sufficient nor precisely labeled in space target SA-ISAR imaging tasks. To address these issues, we propose a metalearning-based SA-ISAR imaging method for space target ISAR imaging tasks. The proposed method comprises two primary modules: the learning-aided alternating minimization module and the metalearning-based optimization module. The learning-aided alternating minimization module retains the explicit ISAR imaging formulations, guaranteeing physical interpretability without data dependency. The metalearning-based optimization module incorporates a non-greedy strategy to enhance convergence performance, ensuring the ability to escape from poor local modes during optimization. Extensive experiments validate that the proposed algorithm demonstrates superior performance, excellent generalization capability, and high efficiency, despite the lack of prior training or access to labeled training samples, compared to existing methods.

     

  • [1]
    丁鹭飞, 耿富录, 陈建春. 雷达原理[M]. 5版. 北京: 电子工业出版社, 2014.

    DING Lufei, GENG Fulu, and CHEN Jianchun. Principle of Radar[M]. 5th ed. Beijing: Publishing House of Electronics Industry, 2014.
    [2]
    张双辉. 基于贝叶斯框架的稀疏孔径ISAR成像技术研究[D]. [博士论文], 国防科学技术大学, 2016.

    ZHANG Shanghui. Research on sparse aperture inverse synthetic aperture radar imaging withing Bayesian framework[D]. [Ph.D. dissertation], National University of Defense Technology, 2016.
    [3]
    MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
    [4]
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    [5]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [6]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [7]
    ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 997–1008. doi: 10.1109/TAP.2011.2173130
    [8]
    PENG Shaowen, LI Shangyuan, XUE Xiaoxiao, et al. High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter[J]. Optics Express, 2018, 26(2): 1978–1987. doi: 10.1364/OE.26.001978
    [9]
    陈阿磊, 王党卫, 马晓岩, 等. 一种基于估计理论的ISAR超分辨成像方法[J]. 系统工程与电子技术, 2010, 32(4): 740–744.

    CHEN Alei, WANG Dangwei, MA Xiaoyan, et al. Method of super resolution imaging for ISAR based on estimation theory[J]. Systems Engineering and Electronics, 2010, 32(4): 740–744.
    [10]
    ZHANG Lei, WANG Hongxian, and QIAO Zhijun. Resolution enhancement for ISAR imaging via improved statistical compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 80. doi: 10.1186/s13634-016-0379-2
    [11]
    XU Gang, XING Mengdao, XIA Xianggen, et al. High-resolution inverse synthetic aperture radar imaging and scaling with sparse aperture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4010–4027. doi: 10.1109/JSTARS.2015.2439266
    [12]
    WEI Shunjun, ZHANG Xiaoling, SHI Jun, et al. Sparse reconstruction for SAR imaging based on compressed sensing[J]. Progress in Electromagnetics Research, 2010, 109: 63–81. doi: 10.2528/PIER10080805
    [13]
    RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [14]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622
    [15]
    YANG Ting, SHI Hongyin, LANG Manyun, et al. ISAR imaging enhancement: Exploiting deep convolutional neural network for signal reconstruction[J]. International Journal of Remote Sensing, 2020, 41(24): 9447–9468. doi: 10.1080/01431161.2020.1799449
    [16]
    QIN Dan, LIU Diyang, GAO Xunzhang, et al. ISAR resolution enhancement using residual network[C]. 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2019: 788–792.
    [17]
    QIN Dan and GAO Xunzhang. Enhancing ISAR resolution by a generative adversarial network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 127–131. doi: 10.1109/LGRS.2020.2965743
    [18]
    WANG Haobo, LI Kaiming, LU Xiaofei, et al. ISAR resolution enhancement method exploiting generative adversarial network[J]. Remote Sensing, 2022, 14(5): 1291. doi: 10.3390/rs14051291
    [19]
    LI Ruize, ZHANG Shuanghui, ZHANG Chi, et al. Deep learning approach for sparse aperture ISAR imaging and autofocusing based on complex-valued ADMM-Net[J]. IEEE Sensors Journal, 2021, 21(3): 3437–3451. doi: 10.1109/JSEN.2020.3025053
    [20]
    LI Ruize, ZHANG Shuanghui, ZHANG Chi, et al. A computational efficient 2-D block-sparse ISAR imaging method based on PCSBL-GAMP-Net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5214814. doi: 10.1109/TGRS.2021.3111901
    [21]
    LEMPITSKY V, VEDALDI A, and ULYANOV D. Deep image prior[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9446–9454.
    [22]
    LIANG Jingyun, ZHANG Kai, GU Shuhang, et al. Flow-based kernel prior with application to blind super-resolution[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10596–10605.
    [23]
    YUE Zongsheng, ZHAO Qian, XIE Jianwen, et al. Blind image super-resolution with elaborate degradation modeling on noise and kernel[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 2118–2128,
    [24]
    XIA Jingyuan, LI Shengxi, HUANG Junjie, et al. Metalearning-based alternating minimization algorithm for nonconvex optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022: 1–15.
    [25]
    YANG Zhixiong, XIA Jingyuan, LUO Junshan, et al. A Learning-aided flexible gradient descent approach to MISO beamforming[J]. IEEE Wireless Communications Letters, 2022, 11(9): 1895–1899. doi: 10.1109/LWC.2022.3186160
    [26]
    KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
  • Relative Articles

    [1]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [2]CHEN Yifan, LIU Jiangang, JIA Yong, GUO Shisheng, CUI Guolong. High-resolution Imaging Method for Through-the-wall Radar Based on Transfer Learning with Simulation Samples[J]. Journal of Radars, 2024, 13(4): 807-821. doi: 10.12000/JR24049
    [3]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [4]WANG Yanfei, LI Heping, HAN Song. Synthetic Aperture Imaging of Antenna Array Coded[J]. Journal of Radars, 2023, 12(1): 1-12. doi: 10.12000/JR23011
    [5]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [6]WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204
    [7]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [8]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [9]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [10]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [11]TIAN Biao, LIU Yang, HU Pengjiang, WU Wenzhen, XU Shiyou, CHEN Zengping. Review of High-resolution Imaging Techniques of Wideband Inverse Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(5): 765-802. doi: 10.12000/JR20060
    [12]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [13]WANG Chao, WANG Yanfei, LIU Chang, LIU Bidan. A New Approach to Range Cell Migration Correction for Ground Moving Targets in High-resolution SAR System Based on Parameter Estimation[J]. Journal of Radars, 2019, 8(1): 64-72. doi: 10.12000/JR18054
    [14]LONG Teng, DING Zegang, XIAO Feng, WANG Yan, LI Zhe. Spaceborne High-resolution Stepped-frequency SAR Imaging Technology[J]. Journal of Radars, 2019, 8(6): 782-792. doi: 10.12000/JR19076
    [15]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [16]Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. Journal of Radars, 2016, 5(5): 548-557. doi: 10.12000/JR16014
    [17]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [18]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [19]Zheng Jian-cheng, Wang Dang-wei, Ma Xiao-yan, Xuan Ze-ping, Feng Xiao-bing. Study on Spin-based Imaging of High-speed Warhead[J]. Journal of Radars, 2013, 2(3): 300-308. doi: 10.3724/SP.J.1300.2013.13070
    [20]Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
  • Cited by

    Periodical cited type(5)

    1. 王元昊,王宏强,刘兴华,曾旸,杨琪. 分布式相参雷达相参效率及相参景深研究. 系统工程与电子技术. 2024(05): 1573-1582 .
    2. 周宝亮. 分布式相参雷达LFM宽带去斜参数估计方法. 电子与信息学报. 2020(07): 1566-1572 .
    3. 周宝亮,周东明,高红卫,鲁耀兵. 分布式孔径相参合成雷达技术试验验证与分析. 太赫兹科学与电子信息学报. 2019(03): 413-417+429 .
    4. 周宝亮,高红卫,文树梁,鲁耀兵. 分布式相参雷达基线选择与标定误差分析. 系统工程与电子技术. 2018(11): 2438-2443 .
    5. 周宝亮,雷子健,周东明,高红卫. 分布式孔径相参雷达预警探测技术. 信号处理. 2018(11): 1330-1338 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.9 %FULLTEXT: 19.9 %META: 71.7 %META: 71.7 %PDF: 8.4 %PDF: 8.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.0 %其他: 14.0 %其他: 0.6 %其他: 0.6 %Bryn Mawr: 0.2 %Bryn Mawr: 0.2 %China: 0.8 %China: 0.8 %India: 0.0 %India: 0.0 %Seattle: 0.1 %Seattle: 0.1 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United Kingdom: 0.1 %United Kingdom: 0.1 %[]: 0.5 %[]: 0.5 %上海: 0.5 %上海: 0.5 %东营: 0.0 %东营: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兰辛: 0.2 %兰辛: 0.2 %内江: 0.1 %内江: 0.1 %包头: 0.0 %包头: 0.0 %北京: 10.3 %北京: 10.3 %北海: 0.1 %北海: 0.1 %南京: 0.9 %南京: 0.9 %南充: 0.1 %南充: 0.1 %南宁: 0.0 %南宁: 0.0 %南昌: 0.1 %南昌: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %天津: 0.5 %天津: 0.5 %太原: 0.1 %太原: 0.1 %孝感: 0.0 %孝感: 0.0 %安康: 0.0 %安康: 0.0 %宜春: 0.3 %宜春: 0.3 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.0 %宿迁: 0.0 %广州: 0.7 %广州: 0.7 %广州市: 0.0 %广州市: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.1 %张家口市: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 0.5 %成都: 0.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 2.2 %杭州: 2.2 %格兰特县: 0.0 %格兰特县: 0.0 %武汉: 0.8 %武汉: 0.8 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.3 %济南: 0.3 %浙江: 0.0 %浙江: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.3 %深圳: 0.3 %深圳市: 0.0 %深圳市: 0.0 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %玉林: 0.0 %玉林: 0.0 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %芒廷维尤: 13.4 %芒廷维尤: 13.4 %芝加哥: 0.4 %芝加哥: 0.4 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西双版纳: 0.0 %西双版纳: 0.0 %西宁: 44.4 %西宁: 44.4 %西安: 0.9 %西安: 0.9 %贵港: 0.2 %贵港: 0.2 %运城: 0.4 %运城: 0.4 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %金华: 0.0 %金华: 0.0 %长沙: 0.4 %长沙: 0.4 %阳泉: 0.0 %阳泉: 0.0 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %其他其他Bryn MawrChinaIndiaSeattleTaiwan, ChinaUnited Kingdom[]上海东营丹东伊利诺伊州佛山保定兰辛内江包头北京北海南京南充南宁南昌台北台州呼和浩特哈尔滨天津太原孝感安康宜春宝鸡宣城宿迁广州广州市开封张家口张家口市惠州成都成都市新都区拉贾斯坦邦新乡无锡昆明杭州格兰特县武汉沈阳济南浙江淮南深圳深圳市温州湖州湘潭漯河烟台焦作玉林石家庄石家庄市纽约绍兴芒廷维尤芝加哥衡阳衢州西双版纳西宁西安贵港运城邯郸郑州重庆金华长沙阳泉香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1099) PDF downloads(192) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint