XIA Jingyuan, YANG Zhixiong, ZHOU Zhixing, et al. A metalearning-based sparse aperture ISAR imaging method[J]. Journal of Radars, 2023, 12(4): 849–859. doi: 10.12000/JR23121
Citation: XIA Jingyuan, YANG Zhixiong, ZHOU Zhixing, et al. A metalearning-based sparse aperture ISAR imaging method[J]. Journal of Radars, 2023, 12(4): 849–859. doi: 10.12000/JR23121

A Metalearning-based Sparse Aperture ISAR Imaging Method

DOI: 10.12000/JR23121
Funds:  The National Natural Science Foundation of China (62171448, 61921001, 62131020, 62022091), Distinguished Youth Science Foundation of Hunan Province (2022JJ10067)
More Information
  • Sparse Aperture-Inverse Synthetic Aperture Radar (SA-ISAR) imaging methods aim to reconstruct high-quality ISAR images from the corresponding incomplete ISAR echoes. The existing SA-ISAR imaging methods can be roughly divided into two categories: model-based and deep learning-based methods. Model-based SA-ISAR methods comprise physical ISAR imaging models based on explicit mathematical formulations. However, due to the high nonconvexity and ill-posedness of the SA-ISAR problem, model-based methods are often ineffective compared with deep learning-based methods. Meanwhile, the performance of the existing deep learning-based methods depends on the quality and quantity of the training data, which are neither sufficient nor precisely labeled in space target SA-ISAR imaging tasks. To address these issues, we propose a metalearning-based SA-ISAR imaging method for space target ISAR imaging tasks. The proposed method comprises two primary modules: the learning-aided alternating minimization module and the metalearning-based optimization module. The learning-aided alternating minimization module retains the explicit ISAR imaging formulations, guaranteeing physical interpretability without data dependency. The metalearning-based optimization module incorporates a non-greedy strategy to enhance convergence performance, ensuring the ability to escape from poor local modes during optimization. Extensive experiments validate that the proposed algorithm demonstrates superior performance, excellent generalization capability, and high efficiency, despite the lack of prior training or access to labeled training samples, compared to existing methods.

     

  • [1]
    丁鹭飞, 耿富录, 陈建春. 雷达原理[M]. 5版. 北京: 电子工业出版社, 2014.

    DING Lufei, GENG Fulu, and CHEN Jianchun. Principle of Radar[M]. 5th ed. Beijing: Publishing House of Electronics Industry, 2014.
    [2]
    张双辉. 基于贝叶斯框架的稀疏孔径ISAR成像技术研究[D]. [博士论文], 国防科学技术大学, 2016.

    ZHANG Shanghui. Research on sparse aperture inverse synthetic aperture radar imaging withing Bayesian framework[D]. [Ph.D. dissertation], National University of Defense Technology, 2016.
    [3]
    MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
    [4]
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    [5]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [6]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [7]
    ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 997–1008. doi: 10.1109/TAP.2011.2173130
    [8]
    PENG Shaowen, LI Shangyuan, XUE Xiaoxiao, et al. High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter[J]. Optics Express, 2018, 26(2): 1978–1987. doi: 10.1364/OE.26.001978
    [9]
    陈阿磊, 王党卫, 马晓岩, 等. 一种基于估计理论的ISAR超分辨成像方法[J]. 系统工程与电子技术, 2010, 32(4): 740–744.

    CHEN Alei, WANG Dangwei, MA Xiaoyan, et al. Method of super resolution imaging for ISAR based on estimation theory[J]. Systems Engineering and Electronics, 2010, 32(4): 740–744.
    [10]
    ZHANG Lei, WANG Hongxian, and QIAO Zhijun. Resolution enhancement for ISAR imaging via improved statistical compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 80. doi: 10.1186/s13634-016-0379-2
    [11]
    XU Gang, XING Mengdao, XIA Xianggen, et al. High-resolution inverse synthetic aperture radar imaging and scaling with sparse aperture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4010–4027. doi: 10.1109/JSTARS.2015.2439266
    [12]
    WEI Shunjun, ZHANG Xiaoling, SHI Jun, et al. Sparse reconstruction for SAR imaging based on compressed sensing[J]. Progress in Electromagnetics Research, 2010, 109: 63–81. doi: 10.2528/PIER10080805
    [13]
    RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [14]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622
    [15]
    YANG Ting, SHI Hongyin, LANG Manyun, et al. ISAR imaging enhancement: Exploiting deep convolutional neural network for signal reconstruction[J]. International Journal of Remote Sensing, 2020, 41(24): 9447–9468. doi: 10.1080/01431161.2020.1799449
    [16]
    QIN Dan, LIU Diyang, GAO Xunzhang, et al. ISAR resolution enhancement using residual network[C]. 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2019: 788–792.
    [17]
    QIN Dan and GAO Xunzhang. Enhancing ISAR resolution by a generative adversarial network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 127–131. doi: 10.1109/LGRS.2020.2965743
    [18]
    WANG Haobo, LI Kaiming, LU Xiaofei, et al. ISAR resolution enhancement method exploiting generative adversarial network[J]. Remote Sensing, 2022, 14(5): 1291. doi: 10.3390/rs14051291
    [19]
    LI Ruize, ZHANG Shuanghui, ZHANG Chi, et al. Deep learning approach for sparse aperture ISAR imaging and autofocusing based on complex-valued ADMM-Net[J]. IEEE Sensors Journal, 2021, 21(3): 3437–3451. doi: 10.1109/JSEN.2020.3025053
    [20]
    LI Ruize, ZHANG Shuanghui, ZHANG Chi, et al. A computational efficient 2-D block-sparse ISAR imaging method based on PCSBL-GAMP-Net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5214814. doi: 10.1109/TGRS.2021.3111901
    [21]
    LEMPITSKY V, VEDALDI A, and ULYANOV D. Deep image prior[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9446–9454.
    [22]
    LIANG Jingyun, ZHANG Kai, GU Shuhang, et al. Flow-based kernel prior with application to blind super-resolution[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10596–10605.
    [23]
    YUE Zongsheng, ZHAO Qian, XIE Jianwen, et al. Blind image super-resolution with elaborate degradation modeling on noise and kernel[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 2118–2128,
    [24]
    XIA Jingyuan, LI Shengxi, HUANG Junjie, et al. Metalearning-based alternating minimization algorithm for nonconvex optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022: 1–15.
    [25]
    YANG Zhixiong, XIA Jingyuan, LUO Junshan, et al. A Learning-aided flexible gradient descent approach to MISO beamforming[J]. IEEE Wireless Communications Letters, 2022, 11(9): 1895–1899. doi: 10.1109/LWC.2022.3186160
    [26]
    KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
  • Relative Articles

    [1]HOU Qingsen, LI Guangzuo, XU Zhongqiu, LIU Chenyu, HONG Wen, WU Yirong. A ISAR Imaging Method for Space Targets Based on Fast Estimation of Joint Motion Parameters[J]. Journal of Radars, 2025, 14(2): 424-438. doi: 10.12000/JR24251
    [2]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [3]WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101
    [4]LYU Yixuan, WANG Zhirui, WANG Peijin, LI Shengyang, TAN Hong, CHEN Kaiqiang, ZHAO Liangjin, SUN Xian. Scattering Information and Meta-learning Based SAR Images Interpretation for Aircraft Target Recognition[J]. Journal of Radars, 2022, 11(4): 652-665. doi: 10.12000/JR22044
    [5]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [6]JIANG Yanwen, FAN Hongqi, LI Shuangxun. A Sparse Bayesian Learning Approach for Vortex Electromagnetic Wave Three-dimensional Imaging in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 718-724. doi: 10.12000/JR21151
    [7]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [8]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [9]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [10]TIAN Biao, LIU Yang, HU Pengjiang, WU Wenzhen, XU Shiyou, CHEN Zengping. Review of High-resolution Imaging Techniques of Wideband Inverse Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(5): 765-802. doi: 10.12000/JR20060
    [11]LUO Ying, NI Jiacheng, ZHANG Qun. Synthetic Aperture Radar Learning-imaging Method Based onData-driven Technique and Artificial Intelligence[J]. Journal of Radars, 2020, 9(1): 107-122. doi: 10.12000/JR19103
    [12]Wang Yong, Chen Xuefei. Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture[J]. Journal of Radars, 2018, 7(3): 320-334. doi: 10.12000/JR18019
    [13]Gu Wenkun, Wang Dangwei, Ma Xiaoyan. Distributed MIMO-ISAR Sub-image Fusion Method[J]. Journal of Radars, 2017, 6(1): 90-97. doi: 10.12000/JR16042
    [14]Zhou Yejian, Zhang Lei, Wang Hongxian, Xing Mengdao. Performance Analysis on ISAR Imaging of Space Targets[J]. Journal of Radars, 2017, 6(1): 17-24. doi: 10.12000/JR16136
    [15]Wu Min, Zhang Lei, Liu Songyang, Xing Mengdao. OFDM-ISAR Sparse Optimization Imaging and Motion Compensation[J]. Journal of Radars, 2016, 5(1): 72-81. doi: 10.12000/JR16017
    [16]Chen Wenfeng, Li Shaodong, Yang Jun, Ma Xiaoyan. Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration[J]. Journal of Radars, 2016, 5(4): 389-401. doi: 10.12000/JR16057
    [17]He Feng, Yang Yang, Dong Zhen, Liang Dian-nong. Progress and Prospects of Curvilinear SAR 3-D Imaging[J]. Journal of Radars, 2015, 4(2): 130-135. doi: 10.12000/JR14119
    [18]Wu Yi-rong. Concept on Multidimensional Space Joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
    [19]Deng Dong-hu, Zhang Qun, Luo Ying, Li Song, Zhu Ren-Fei. Resolution and Micro-Doppler Effect in Bi-ISAR System (in English)[J]. Journal of Radars, 2013, 2(2): 152-167. doi: 10.3724/SP.J.1300.2013.13039
    [20]Zhong Li-hua, Hu Dong-hui, Ding Chi-biao, Zhang Wen-yi. ISAR Sparse Aperture Imaging Algorithm for Large Size Target[J]. Journal of Radars, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033
  • Cited by

    Periodical cited type(1)

    1. 彭关弘烨,任新成,王玉清,赵晔,杨鹏举. 某型舰载机目标的ISAR成像算法研究. 现代电子技术. 2024(07): 66-72 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.7 %FULLTEXT: 34.7 %META: 55.7 %META: 55.7 %PDF: 9.7 %PDF: 9.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.4 %其他: 8.4 %其他: 2.0 %其他: 2.0 %Central District: 0.1 %Central District: 0.1 %China: 0.5 %China: 0.5 %Falls Church: 0.5 %Falls Church: 0.5 %Greencastle: 0.3 %Greencastle: 0.3 %[]: 0.1 %[]: 0.1 %上海: 1.9 %上海: 1.9 %东京都: 0.1 %东京都: 0.1 %东莞: 0.4 %东莞: 0.4 %东营: 0.1 %东营: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %丹东: 0.1 %丹东: 0.1 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.2 %佳木斯: 0.2 %兰辛: 0.2 %兰辛: 0.2 %列克星敦: 0.2 %列克星敦: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 8.7 %北京: 8.7 %十堰: 0.2 %十堰: 0.2 %南京: 3.1 %南京: 3.1 %南充: 0.1 %南充: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %南阳: 0.1 %南阳: 0.1 %博帕尔: 0.2 %博帕尔: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %厦门: 0.3 %厦门: 0.3 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.6 %合肥: 0.6 %吉安: 0.1 %吉安: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 1.3 %哈尔滨: 1.3 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %多伦多: 0.1 %多伦多: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.9 %天津: 0.9 %太原: 1.3 %太原: 1.3 %奥尔巴尼: 0.2 %奥尔巴尼: 0.2 %威海: 0.4 %威海: 0.4 %娄底: 0.2 %娄底: 0.2 %安康: 0.3 %安康: 0.3 %安顺: 0.1 %安顺: 0.1 %宜春: 0.3 %宜春: 0.3 %宣城: 0.4 %宣城: 0.4 %宿州: 0.1 %宿州: 0.1 %常州: 0.2 %常州: 0.2 %常德: 1.4 %常德: 1.4 %广安: 0.1 %广安: 0.1 %广州: 1.9 %广州: 1.9 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.1 %延安: 0.1 %延边: 0.1 %延边: 0.1 %开封: 0.1 %开封: 0.1 %弗吉尼亚州: 0.4 %弗吉尼亚州: 0.4 %弗里蒙特: 0.1 %弗里蒙特: 0.1 %张家口: 2.5 %张家口: 2.5 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %惠州: 0.2 %惠州: 0.2 %成都: 2.2 %成都: 2.2 %扬州: 0.6 %扬州: 0.6 %拉萨: 0.1 %拉萨: 0.1 %新乡: 0.7 %新乡: 0.7 %新德里: 0.1 %新德里: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 2.0 %昆明: 2.0 %晋城: 0.1 %晋城: 0.1 %曼彻斯特: 0.1 %曼彻斯特: 0.1 %朔州: 0.1 %朔州: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.6 %杭州: 0.6 %枣庄: 0.1 %枣庄: 0.1 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.6 %武汉: 0.6 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.1 %泰安: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.5 %济南: 0.5 %济宁: 0.1 %济宁: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.5 %深圳: 0.5 %清远: 0.1 %清远: 0.1 %温州: 0.2 %温州: 0.2 %渭南: 0.1 %渭南: 0.1 %湖州: 0.2 %湖州: 0.2 %湘西: 0.2 %湘西: 0.2 %漯河: 1.3 %漯河: 1.3 %漳州: 0.1 %漳州: 0.1 %烟台: 0.3 %烟台: 0.3 %珠海: 0.3 %珠海: 0.3 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.1 %米兰: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.5 %绵阳: 0.5 %聊城: 0.2 %聊城: 0.2 %芒廷维尤: 12.9 %芒廷维尤: 12.9 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.2 %苏州: 0.2 %荆州: 0.2 %荆州: 0.2 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.5 %衡阳: 0.5 %衢州: 0.2 %衢州: 0.2 %西宁: 13.0 %西宁: 13.0 %西安: 5.5 %西安: 5.5 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %达拉斯: 0.2 %达拉斯: 0.2 %迈阿密: 0.1 %迈阿密: 0.1 %运城: 0.6 %运城: 0.6 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.4 %郑州: 0.4 %都柏林: 0.2 %都柏林: 0.2 %酒泉: 0.2 %酒泉: 0.2 %重庆: 0.7 %重庆: 0.7 %金华: 0.1 %金华: 0.1 %铁岭: 0.1 %铁岭: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 6.0 %长沙: 6.0 %阿什本: 0.4 %阿什本: 0.4 %青岛: 0.5 %青岛: 0.5 %鞍山: 0.1 %鞍山: 0.1 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %驻马店: 0.1 %驻马店: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.6 %齐齐哈尔: 0.6 %其他其他Central DistrictChinaFalls ChurchGreencastle[]上海东京都东莞东营中山临汾临沂丹东伦敦佛山佳木斯兰辛列克星敦加利福尼亚州北京十堰南京南充南昌南通南阳博帕尔卡拉奇厦门台北台州合肥吉安呼和浩特咸阳哈尔滨哥伦布唐山嘉兴多伦多大连天津太原奥尔巴尼威海娄底安康安顺宜春宣城宿州常州常德广安广州库比蒂诺延安延边开封弗吉尼亚州弗里蒙特张家口张家界徐州惠州成都扬州拉萨新乡新德里无锡昆明晋城曼彻斯特朔州朝阳杭州枣庄格兰特县武汉江门沈阳泰安泸州洛阳济南济宁淮南深圳清远温州渭南湖州湘西漯河漳州烟台珠海石家庄福州秦皇岛米兰纽约绍兴绵阳聊城芒廷维尤芝加哥苏州荆州葫芦岛蚌埠衡水衡阳衢州西宁西安西雅图诺沃克达拉斯迈阿密运城邯郸郑州都柏林酒泉重庆金华铁岭长春长沙阿什本青岛鞍山香港香港特别行政区马鞍山驻马店黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1101) PDF downloads(192) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint