Citation: | ZHANG Tianxian and XIA Xiang-Gen. An overview of OFDM SAR imaging methods[J]. Journal of Radars, 2020, 9(2): 243–258. doi: 10.12000/JR19116 |
[1] |
AXELSSON S R J. Analysis of random step frequency radar and comparison with experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 890–904. doi: 10.1109/TGRS.2006.888865
|
[2] |
GARMATYUK D S and NARAYANAN R M. Ultra-wideband continuous-wave random noise arc-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2543–2552. doi: 10.1109/TGRS.2002.807009
|
[3] |
XU Xiaojian and NARAYANAN R M. FOPEN SAR imaging using UWB step-frequency and random noise waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1287–1300. doi: 10.1109/7.976965
|
[4] |
KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934
|
[5] |
WANG Wenqin. MIMO SAR imaging: Potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(8): 18–23. doi: 10.1109/MAES.2013.6575407
|
[6] |
邢孟道, 保铮, 李真芳, 等. 雷达成像算法进展[M]. 北京: 电子工业出版社, 2014.
XING Mengdao, BAO Zheng, LI Zhenfang, et al. The Development of Radar Imaging Algorithm[M]. Beijing: Publishing House of Electronics Industry, 2014.
|
[7] |
BUHARI M D, TIAN Guiyun, TIWARI R, et al. OFDM SAR multiple targets image reconstruction using MUSIC-LSE algorithm[C]. The 2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing, Aachen, Germany, 2016: 42–46. doi: 10.1109/CoSeRa.2016.7745696.
|
[8] |
GARMATYUK D S. Simulated imaging performance of UWB SAR based on OFDM[C]. 2006 IEEE International Conference on Ultra-Wideband, Waltham, UK, 2006: 237–242. doi: 10.1109/ICU.2006.281556.
|
[9] |
GARMATYUK D. Ultrawideband imaging radar based on OFDM: System simulation analysis[C]. The SPE 6210, Radar Sensor Technology X, Florida, USA, 2006: 621007. doi: 10.1117/12.660274.
|
[10] |
GARMATYUK D, SCHUERGER J, MORTON Y T, et al. Feasibility study of a multi-carrier dual-use imaging radar and communication system[C]. 2007 European Microwave Conference, Munich, Germany, 2007: 1473–1476. doi: 10.1109/EUMC.2007.4405484.
|
[11] |
HOSSAIN A, ELSHAFIEY I, ALKANHAL M A, et al. Adaptive UWB-OFDM synthetic aperture radar[C]. 2011 Saudi International Electronics, Communications and Photonics Conference, Riyadh, Saudi Arabia, 2011: 1–6. doi: 10.1109/SIECPC.2011.5876887.
|
[12] |
RICHÉ V, MÉRIC S, BAUDAIS J Y, et al. Investigations on OFDM signal for range ambiguity suppression in SAR configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4194–4197. doi: 10.1109/TGRS.2013.2280190
|
[13] |
RICHÉ V, MÉRIC S, BAUDAIS J Y, et al. Optimization of OFDM SAR signals for range ambiguity suppression[C]. The 2012 9th European Radar Conference, Amsterdam, Netherlands, 2012: 278–281.
|
[14] |
RICHÉ V, MÉRIC S, and POTTIER É. Range ambiguity suppression in an OFDM SAR configuration[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 115–118.
|
[15] |
RICHÉ V, MÉRIC S, POTTIER E, et al. OFDM signal design for range ambiguity suppression in SAR configuration[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 2156–2159. doi: 10.1109/IGARSS.2012.6351076.
|
[16] |
EL SANHOURY A and MABROUK A H. Performance improvement of pulsed OFDM UWB systems using ATF coding[C]. International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2010: 1–4. doi: 10.1109/ICCCE.2010.5556867.
|
[17] |
SCHUERGER J and GARMATYUK D. Multifrequency OFDM SAR in presence of deception jamming[J]. EURASIP Journal on Advances in Signal Processing, 2010: 451851. doi: 10.1155/2010/451851
|
[18] |
ZHANG Tianxian and XIA Xiang-Gen. OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 394–404. doi: 10.1109/TGRS.2014.2322813
|
[19] |
ZHANG Tianxian, XIA Xiang-Gen, and KONG Lingjiang. IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4748–4759. doi: 10.1109/TSP.2014.2339796
|
[20] |
PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed. New York: McGraw-Hill, 2001.
|
[21] |
SOUMEKH M. Synthetic Aperture Radar Signal Processing[M]. New York: Wiley, 1999.
|
[22] |
范崇祎, 黄晓涛. 基于编码项补偿的OFDM信号SAR成像[J]. 电子与信息学报, 2012, 34(8): 1833–1839. doi: 10.3724/SP.J.1146.2011.01256
FAN Chongyi and HUANG Xiaotao. The imaging of SAR based on OFDM waveforms signal with the compensation of coding term[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1833–1839. doi: 10.3724/SP.J.1146.2011.01256
|
[23] |
HOSSAIN A, ELSHAFIEY I, and ALKANHAL M A. High resolution UWB SAR based on OFDM architecture[C]. The 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, South Korea, 2011: 1–4.
|
[24] |
FAN Chongyi, HUANG Xiaotao, JIN Tian, et al. Ambigutiy function of SAR based on OFDM waveform[C]. 2010 IEEE Radar Conference, Washington, USA, 2010: 397–401. doi: 10.1109/RADAR.2010.5494590.
|
[25] |
范崇祎. 单/双通道低频SAR/GMTI技术研究[D]. [博士论文], 国防科学技术大学, 2012.
FAN Chongyi. Research on low frequency SAR/GMTI techniques with single/dual-channel data[D]. [Ph.D. dissertation], National University of Defense Technology, 2012.
|
[26] |
YU Xiang, FU Yaowen, NIE Lei, et al. A waveform with low intercept probability for OFDM SAR[C]. 2016 Progress in Electromagnetic Research Symposium, Shanghai, China, 2016: 2054–2058. doi: 10.1109/PIERS.2016.7734869.
|
[27] |
HOSSAIN A, ELSHAFIEY I, ALKANHAL M A, et al. Anti-jamming capabilities of UWB-OFDM SAR[C]. The 2011 8th European Radar Conference, Manchester, UK, 2011: 313–316.
|
[28] |
FENG Xiangzhi and XU Xiaojian. ECCM performance analysis of chaotic coded orthogonal frequency division multiplexing (COFDM) SAR[C]. The SPIE 8021, Radar Sensor Technology XV, Orlando, USA, 2011: 80211K. doi: 10.1117/12.883637.
|
[29] |
HOSSAIN A, ELSHAFIEY I, and ALKANHAL M A. High-resolution and jamming-resistant UWB-OFDM SAR imaging[C]. 2011 IEEE International Symposium on Signal Processing and Information Technology, Bilbao, Spain, 2011: 557–561. doi: 10.1109/ISSPIT.2011.6151624.
|
[30] |
BUFLER T D and GARMATYUK D S. Image-based target detection with multispectral UWB OFDM radar[J]. Proceedings of SPIE 8361, Radar Sensor Technology XVI, Baltimore, 2012: 83610T. doi: 10.1117/12.918710
|
[31] |
王杰, 梁兴东, 丁赤飚, 等. OFDM SAR多普勒补偿方法研究[J]. 电子与信息学报, 2013, 35(12): 3037–3040. doi: 10.3724/SP.J.1146.2012.01547
WANG Jie, LIANG Xingdong, DING Chibiao, et al. Investigation on the doppler compensation in OFDM SAR[J]. Journal of Electronics &Information Technology, 2013, 35(12): 3037–3040. doi: 10.3724/SP.J.1146.2012.01547
|
[32] |
LI Keyong, PILLAI U, and HIMED B. Moving target geolocation in bistatic/passive SAR images using ATI[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 45–50. doi: 10.1109/RADAR.2015.7130968.
|
[33] |
朱柯弘, 王杰, 梁兴东, 等. 用于SAR与通信一体化系统的滤波器组多载波波形[J]. 雷达学报, 2018, 7(5): 602–612. doi: 10.12000/JR18038
ZHU Kehong, WANG Jie, LIANG Xingdong, et al. Filter bank multicarrier waveform used for integrated SAR and communication systems[J]. Journal of Radars, 2018, 7(5): 602–612. doi: 10.12000/JR18038
|
[34] |
ZHU Kehong, WANG Jie, LIANG Xingdong, et al. Joint SAR imaging and wireless communication using the FBMC chirp waveform[J]. Science China Information Sciences, 2020, 63(4): 149302. doi: 10.1007/s11432-018-9830-1
|
[35] |
李小萍. 基于OFDM的合成孔径雷达距离模糊抑制[J]. 舰船电子对抗, 2018, 41(2): 32–36. doi: 10.16426/j.cnki.jcdzdk.2018.02.007
LI Xiaoping. Range ambiguity suppression of SAR based on OFDM[J]. Shipboard Electronic Countermeasure, 2018, 41(2): 32–36. doi: 10.16426/j.cnki.jcdzdk.2018.02.007
|
[36] |
GARMATYUK D and BRENNEMAN M. Slow-time SAR signal processing for UWB OFDM radar system[C]. 2010 IEEE Radar Conference, Washington, USA, 2010: 853–858. doi: 10.1109/RADAR.2010.5494502.
|
[37] |
GARMATYUK D. Cross-range SAR reconstruction with multicarrier OFDM signals[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 808–812. doi: 10.1109/LGRS.2011.2182176
|
[38] |
GARMATYUK D and BRENNEMAN M. Adaptive multicarrier OFDM SAR signal processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3780–3790. doi: 10.1109/TGRS.2011.2165546
|
[39] |
JAMESON B, GARMATYUK D, MORTON Y T J, et al. Short-range rotational sar imaging of indoor environments using UWB OFDM sensor[C]. 2013 IEEE Radar Conference, Ottawa, Canada, 2013: 1–6. doi: 10.1109/RADAR.2013.6586021.
|
[40] |
BUHARI M D and MUQAIBEL A H. SAR multiple targets imaging using UWB OFDM signals[C]. The 2014 9th International Symposium on Communication Systems, Networks & Digital Sign, Manchester, UK, 2014: 485–490. doi: 10.1109/CSNDSP.2014.6923878.
|
[41] |
BUHARI M D, TIAN Guiyun, TIWARI R, et al. Multicarrier SAR image reconstruction using integrated MUSIC-LSE algorithm[J]. IEEE Access, 2018, 6: 22827–22838. doi: 10.1109/ACCESS.2018.2817359
|
[42] |
郭赛. 成像雷达通信一体化共享信号设计与研究[D]. [硕士论文], 哈尔滨工业大学, 2016.
GUO Sai. Research and design on integration signal sharing imaging radar and communication[D]. [Master dissertation], Harbin Institute of Technology, 2016.
|
[43] |
DEL ARROYO J R G and JACKSON J A. WiMAX OFDM for passive SAR ground imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 945–959. doi: 10.1109/TAES.2013.6494391
|
[44] |
GUTIÉRREZ DEL ARROYO J R. Passive synthetic aperture radar imaging using commercial OFDM communication networks[D]. [Ph.D. dissertation], Air Force Institute of Technology, 2012.
|
[45] |
DEL ARROYO J R G and JACKSON J A. Collecting and processing WiMAX ground returns for SAR imaging[C]. 2013 IEEE Radar Conference, Ottawa, Canada, 2013: 1–6. doi: 10.1109/RADAR.2013.6586157.
|
[46] |
LIU Kai, WANG Xianbin, SAMARABANDU J, et al. Enhanced WiMAX SAR system equipped with multiple modes[C]. The 7th International Conference on Information and Automation for Sustainability, Colombo, Sri Lanka, 2014: 1–6. doi: 10.1109/ICIAFS.2014.7069579.
|
[47] |
LIU Kai, WANG Xianbin, SAMARABANDU J, et al. Monostatic airborne SAR using license exempt WiMAX transceivers[C]. The 2014 IEEE 80th Vehicular Technology Conference, Vancouver, Canada, 2014: 1–6. doi: 10.1109/VTCFall.2014.6966060.
|
[48] |
YU Xiang, FU Yaowen, NIE Lei, et al. IRCI-free CP-OFDM SAR signal processing[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 50–54. doi: 10.1109/LGRS.2018.2867484
|
[49] |
KHADHER G A B, ZIDOURI A C, and MUQAIBEL A H. UWB cyclic prefix-based OFDM synthetic aperture radar for foliage penetration[C]. The 2018 15th International Multi-Conference on Systems, Signals & Devices, Hammamet, Tunisia, 2018: 234–239. doi: 10.1109/SSD.2018.8570677.
|
[50] |
KIM J H. Multipe-input multiple-output synthetic aperture radar for multimodal operation[R]. Institut für Hochfrequenztechnik und Elektronik, 2011.
|
[51] |
KIM J, YOUNIS M, MOREIRA A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. doi: 10.1109/LGRS.2012.2213577
|
[52] |
WANG Zongbo, TIGREK F, KRASNOV O, et al. Interleaved OFDM radar signals for simultaneous polarimetric measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2085–2099. doi: 10.1109/TAES.2012.6237580
|
[53] |
KIM J, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. doi: 10.1109/TGRS.2014.2360148
|
[54] |
HAN Kuoye, WANG Yanping, ZHANG Yingjie, et al. Diversity schemes analysis for MIMO synthetic aperture radar[C]. Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, Japan, 2013: 404–407.
|
[55] |
HAN Kuoye, WANG Yanping, PENG Xueming, et al. Modulating multicarriers with chirp for MIMO-SAR waveform diversity design[C]. 2013 IEEE International Conference on Signal Processing, Communication and Computing, Kunming, China, 2013: 1–4. doi: 10.1109/ICSPCC.2013.6664000.
|
[56] |
WANG Jie, LIANG Xingdong, and CHEN Longyong. MIMO SAR system using digital implemented OFDM waveforms[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7428–7431. doi: 10.1109/IGARSS.2012.6351944.
|
[57] |
WANG Jie, CHEN Longyong, LIANG Xingdong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218–5228. doi: 10.1109/TGRS.2015.2419271
|
[58] |
WANG Jie, LIANG Xingdong, DING Chibiao, et al. An improved OFDM chirp waveform used for MIMO SAR system[J]. Science China Information Sciences, 2014, 57(6): 1–9. doi: 10.1007/s11432-013-4966-7
|
[59] |
WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of joint wireless communication and high-resolution SAR imaging using airborne MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6619–6632. doi: 10.1109/TGRS.2019.2907561
|
[60] |
CHENG Pu, WANG Zhan, XIN Qin, et al. Imaging of FMCW MIMO radar with interleaved OFDM waveform[C]. The 2014 12th International Conference on Signal Processing, Hangzhou, China, 2014: 1944–1948. doi: 10.1109/ICOSP.2014.7015332.
|
[61] |
WANG Wenqin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. doi: 10.1109/TGRS.2011.2116030
|
[62] |
WANG Wenqin. Mitigating range ambiguities in High-PRF SAR with OFDM waveform diversity[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 101–105. doi: 10.1109/LGRS.2012.2193870
|
[63] |
WANG Wenqin. Wide-swath SAR remote sensing using a multiaperture antenna with waveform diversity[J]. International Journal of Remote Sensing, 2013, 34(12): 4142–4155. doi: 10.1080/01431161.2013.772674
|
[64] |
WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615–1625. doi: 10.1109/TGRS.2014.2346478
|
[65] |
王文钦, 程胜娟, 邵怀宗. 基于稀疏矩阵和相关函数联合优化的MIMO-OFDM线性调频波形复用设计与实现方法[J]. 雷达学报, 2015, 4(1): 1–10. doi: 10.12000/JR14148
WANG Wenqin, CHENG Shengjuan, and SHAO Huaizong. MIMO-OFDM chirp waveform diversity design and implementation based on sparse matrix and correlation optimization[J]. Journal of Radars, 2015, 4(1): 1–10. doi: 10.12000/JR14148
|
[66] |
LIU Shangwen, ZHANG Zenghui, and YU Wenxian. A space-time coding scheme with time and frequency comb-like chirp waveforms for MIMO-SAR[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 391–403. doi: 10.1109/JSTSP.2016.2631945
|
[67] |
刘尚文. 基于多维分集的MIMO-SAR波形设计[D]. [博士论文], 上海交通大学, 2017.
LIU Shangwen. MIMO-SAR waveform design based on the multi-dimensional diversity[D]. [Ph.D. dissertation], Shanghai Jiao Tong University, 2017.
|
[68] |
LIU Shangwen, ZHANG Zenghui, and YU Wenxian. Circulate shifted OFDM chirp waveform diversity design with digital beamforming for MIMO SAR[J]. Science China Information Sciences, 2017, 60(10): 102307. doi: 10.1007/s11432-016-9003-9
|
[69] |
WANG Ruijia, CHEN Jie, WANG Xing, et al. High-performance anti-retransmission deception jamming utilizing range direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR)[J]. Sensors, 2017, 17(1): 123. doi: 10.3390/s17010123
|
[70] |
李毅, 王杰, 梁兴东. 基于OFDM的MIMO-SAR抗多径波形设计[J]. 雷达科学与技术, 2019, 17(1): 70–76, 82. doi: 10.3969/j.issn.1672-2337.2019.01.013
LI Yi, WANG Jie, and LIANG Xingdong. Design of MIMO-SAR anti-multipath waveform based on OFDM[J]. Radar Science and Technology, 2019, 17(1): 70–76, 82. doi: 10.3969/j.issn.1672-2337.2019.01.013
|
[71] |
YANG Degui, LIANG Buge, ZHAO Dangjun, et al. MIMO-SAR orthogonal waveform set design based on random subcarriers OFDM signal[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(16): 1722–1738. doi: 10.1080/09205071.2017.1363002
|
[72] |
HOSSAIN M A, ELSHAFIEY I, and ALKANHAL M A S. High-resolution and wide-swath UWB OFDM MIMO synthetic aperture radar system using image fusion[J]. Journal of the Indian Society of Remote Sensing, 2015, 43(2): 225–242. doi: 10.1007/s12524-014-0406-4
|
[73] |
ALANSI M, ELSHAFIEY I, AL-SANIE A, et al. Multi-user detection for radar and communication multifunction system[J]. Journal of Circuits, Systems and Computers, 2015, 24(3): 1550038. doi: 10.1142/S0218126615500383
|
[74] |
BAUDAIS J Y, MÉRIC S, RICHÉ V, et al. MIMO-OFDM signal optimization for SAR imaging radar[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 103. doi: 10.1186/s13634-016-0402-7
|
[75] |
杨卫星. 多天线合成孔径雷达成像研究[D]. [硕士论文], 哈尔滨工业大学, 2017.
YANG Weixing. Research on multi-antenna SAR imaging[D]. [Master dissertation], Harbin Institute of Technology, 2017.
|
[76] |
XIA Xiang-Gen, ZHANG Tianxian, and KONG Lingjiang. MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2276–2293. doi: 10.1109/TAES.2015.140477
|
[77] |
张天贤. 距离旁瓣抑制的波形设计算法研究[D]. [博士论文], 电子科技大学, 2015.
ZHANG Tianxian. Waveform design for range sidelobe suppression[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2015.
|
[78] |
ZHANG Tianxian, XIA Xiang-Gen, and KONG Lingjiang. CP-based MIMO OFDM radar IRCI free range reconstruction using real orthogonal designs[J]. Science China Information Sciences, 2017, 60(2): 022301. doi: 10.1007/s11432-015-0979-5
|
[79] |
LIANG Xuebin and XIA Xiang-Gen. On the nonexistence of rate-one generalized complex orthogonal designs[J]. IEEE Transactions on Information Theory, 2003, 49(11): 2984–2988. doi: 10.1109/TIT.2003.818396
|
[80] |
WANG Haiquan and XIA Xiang-Gen. Upper bounds of rates of complex orthogonal space-time block codes[J]. IEEE Transactions on Information Theory, 2003, 49(10): 2788–2796. doi: 10.1109/TIT.2003.817830
|
[81] |
LIANG Xuebin. Orthogonal designs with maximal rates[J]. IEEE Transactions on Information Theory, 2003, 49(10): 2468–2503. doi: 10.1109/TIT.2003.817426
|
[82] |
SU Weifeng, XIA Xiang-Gen, and LIU K J R. A systematic design of high-rate complex orthogonal space-time block codes[J]. IEEE Communications Letters, 2004, 8(6): 380–382. doi: 10.1109/LCOMM.2004.827429
|
[83] |
LU Kejie, FU Shengli, and XIA Xiang-Gen. Closed-form designs of complex orthogonal space-time block codes of rates (k+1)/(2k) for 2k–1 or 2k transmit antennas[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4340–4347. doi: 10.1109/TIT.2005.858943
|
[84] |
XIA Xiang-Gen. Multirate Filterbanks[M]. WEBSTER J W. Wiley Encyclopedia of Electrical and Electronics Engineering. New York: Wiley, 1999: 35–51.
|
[85] |
CAO Yunhe, XIA Xiang-Gen, and WANG Shenghua. IRCI free colocated mimo radar based on sufficient cyclic prefix OFDM waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2107–2120. doi: 10.1109/TAES.2015.140526
|
[86] |
CAO Yunhe and XIA Xiang-Gen. IRCI-free MIMO-OFDM SAR using circularly shifted Zadoff-Chu sequences[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1126–1130. doi: 10.1109/LGRS.2014.2385693
|
[87] |
禹卫东, 李红霞. MIMO-SAR回波分离方法分析[J]. 数据采集与处理, 2014, 29(4): 533–541. doi: 10.3969/j.issn.1004-9037.2014.04.007
YU Weidong and LI Hongxia. Analysis of echo separation in MIMO-SAR[J]. Journal of Data Acquisition &Processing, 2014, 29(4): 533–541. doi: 10.3969/j.issn.1004-9037.2014.04.007
|
[88] |
HUANG Yan, LIAO Guisheng, XU Jingwei, et al. MIMO SAR OFDM chirp waveform design and GMTI with RPCA based method[J]. Digital Signal Processing, 2016, 51: 184–195. doi: 10.1016/j.dsp.2016.01.006
|
[89] |
HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation for MIMO SAR system via fast interferometry RPCA method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1774–1787. doi: 10.1109/TGRS.2017.2768243
|