Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
Citation: ZHANG Lingzhi, LIU Feifeng, and HU Cheng. Optimization method and analysis of data acquisition strategy based on interference SAR with GNSS transmitters[J]. Journal of Radars, 2019, 8(5): 624–630. doi: 10.12000/JR19065

Optimization Method and Analysis of Data Acquisition Strategy Based on Interference SAR with GNSS Transmitters

DOI: 10.12000/JR19065
Funds:  The National Natural Science Foundation of China (61601032, 61625103)
More Information
  • Corresponding author: LIU Feifeng, feifengliu_bit@bit.edu.cn
  • Received Date: 2019-07-04
  • Rev Recd Date: 2019-08-12
  • Available Online: 2019-09-02
  • Publish Date: 2019-10-01
  • Interference Synthetic Aperture Radar based on the Global Navigation Satellite System (GNSS-InSAR) uses in-orbit navigation satellites as transmitters of opportunity and receivers are deployed near the ground. Continuous regional observation can be achieved by the constellation and repeat-pass characteristics of the navigation satellites. Continuous-time data collection is required for 1D/3D deformation retrieval of the scene, just like city, bridge, and slope. Since the navigation satellites are not strictly repeat pass and time of repeat pass is uncertain, the original data redundancy is high and interception amount is large when data are aligned, reducing the effect of data. This study focuses on the time accuracy of data acquisition in deformation retrieval of GNSS-InSAR and proposes a repeat-pass data acquisition optimization model, which combines the actual trajectory with the STK, two-line element set prediction trajectory, and sliding window trajectory of the spatial coherence coefficient. Data are aligned to determine the time interval of the adjacent navigation satellites, enabling accurate GNSS-InSAR data acquisition and ensuring effective data accumulation time under reduced original data redundancy. The measured data show the effectiveness of the proposed method.

     

  • [1]
    CHERNIAKOV M. Space-surface bistatic synthetic aperture radar—prospective and problems[C]. Proceedings of RADAR 2002, Edinburgh, UK, 2002.
    [2]
    ANTONIOU M and CHERNIAKOV M. Experimental demonstration of passive GNSS-based SAR imaging modes[C]. Proceedings of IET International Radar Conference 2013, Xi’an, China, 2013.
    [3]
    ZENG Tao, ZHANG Tian, TIAN Weiming, et al. A novel subsidence monitoring technique based on space-surface bistatic differential interferometry using GNSS as transmitters[J]. Science China Information Sciences, 2015, 58(6): 1–16.
    [4]
    ZENG Tao, ZHANG Tian, TIAN Weiming, et al. Bistatic SAR imaging processing and experiment results using BeiDou-2/Compass-2 as illuminator of opportunity and a fixed receiver[C]. Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, Singapore, 2015.
    [5]
    FAN Xuezhen, LIU Feifeng, ZHANG Tian, et al. Passive SAR with GNSS transmitters: Latest results and research progress[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017.
    [6]
    ANTONIOU M, CHERNIAKOV M, and MA Hui. Space-surface bistatic synthetic aperture radar with navigation satellite transmissions: A review[J]. Science China Information Sciences, 2015, 58(6): 1–20.
    [7]
    LIU Feifeng, ANTONIOU M, ZENG Zhangfan, et al. Point spread function analysis for BSAR with GNSS transmitters and long dwell times: Theory and experimental confirmation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 781–785. doi: 10.1109/LGRS.2012.2223655
    [8]
    MA Hui, ANTONIOU M, and CHERNIAKOV M. Passive GNSS-based SAR resolution improvement using joint Galileo E5 signals[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1640–1644. doi: 10.1109/LGRS.2015.2417594
    [9]
    ZENG Tao, ZHANG Tian, TIAN Weiming, et al. Space-surface bistatic SAR image enhancement based on repeat-pass coherent fusion with Beidou-2/Compass-2 as illuminators[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1832–1836. doi: 10.1109/LGRS.2016.2614337
    [10]
    ANTONIOU M, LIU F, ZENG Z, et al. Coherent change detection using GNSS-based passive SAR: First experimental results[C]. Proceedings of 2012 IET International Conference on Radar Systems, Glasgow, UK, 2012.
    [11]
    TZAGKAS D, ANTONIOU M, and CHERNIAKOV M. Coherent change detection experiments with GNSS-based passive SAR[C]. Proceedings of 2016 European Radar Conference, London, UK, 2016.
    [12]
    LIU Feifeng, FAN Xuezhen, ZHANG Tian, et al. GNSS-based SAR interferometry for 3-D deformation retrieval: Algorithms and feasibility study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5736–5748.
    [13]
    DONG Xichao, HU Cheng, TIAN Weiming, et al. Feasibility study of inclined geosynchronous SAR focusing using Beidou IGSO signals[J]. Science China Information Sciences, 2016, 59(12): 129302. doi: 10.1007/s11432-016-5524-x
    [14]
    LIU Feifeng, FAN Xuezhen, ZHANG Lingzhi, et al. GNSS-based SAR for urban area imaging: Topology optimization and experimental confirmation[J]. International Journal of Remote Sensing, 2019, 40(12): 4668–4682. doi: 10.1080/01431161.2019.1569790
    [15]
    ZHANG Qilei, ANTONIOU M, CHANG Wenge, et al. Spatial decorrelation in GNSS-based SAR coherent change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 219–228. doi: 10.1109/TGRS.2014.2321145
    [16]
    ZEBKER H A and VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950–959. doi: 10.1109/36.175330
    [17]
    FERRETTI A, PRATI C, and ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8–20. doi: 10.1109/36.898661
    [18]
    ZENG Tao, CHERNIAKOV M, and LONG Teng. Generalized approach to resolution analysis in BSAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2): 461–474. doi: 10.1109/TAES.2005.1468741
  • Relative Articles

    [1]BAI Zechao, WANG Yanping, WANG Zhenhai, HU Jun, LI Yang, LIN Yun. A Non-homogenous Atmospheric Compensation Method for Deformation Monitoring of Wide-field Ground-based SAR[J]. Journal of Radars, 2023, 12(1): 53-63. doi: 10.12000/JR22120
    [2]LYU Zexin, QIU Xiaolan, ZHANG Zhe, DING Chibiao. Error Analysis of Polarimetric Interferometric SAR under Different Processing Modes in Urban Areas[J]. Journal of Radars, 2022, 11(4): 600-617. doi: 10.12000/JR22059
    [3]HU Xiaoning, WANG Bingnan, XIANG Maosheng, WANG Zhongbin. InSAR Elevation Inversion Method Based on Backprojection Model with External DEM[J]. Journal of Radars, 2021, 10(3): 391-401. doi: 10.12000/JR20144
    [4]WANG Chao, QIU Xiaolan, LI Fangfang, LEI Bin. An InSAR Image Simulation and Elevation Inversion Method for Buildings[J]. Journal of Radars, 2020, 9(2): 373-385. doi: 10.12000/JR20010
    [5]TAN Pengyuan, ZHU Jianjun, FU Haiqiang, LIN Hui. Inversion of Forest Height Based on ALOS-2 PARSAR-2 Multi-baseline Polarimetric SAR Interferometry Data[J]. Journal of Radars, 2020, 9(3): 569-577. doi: 10.12000/JR20030
    [6]LU Jiaguo, TAO Li, ZHONG Xuelian, ZHANG Jiajia, SHEN Mingxing, LIU Zhikun. L-band Airborne Repeat-pass Interferometric SAR System and Its Experimental Study[J]. Journal of Radars, 2019, 8(6): 804-819. doi: 10.12000/JR19078
    [7]Bu Yuncheng, Wang Yu, Zhang Fubo, Ji Guangyu, Chen Longyong, Liang Xingdong. Antenna Phase Center Calibration for Array InSAR System Based on Orthogonal Subspace[J]. Journal of Radars, 2018, 7(3): 335-345. doi: 10.12000/JR18007
    [8]Si Qi, Wang Yu, Deng Yunkai, Li Ning, Zhang Heng. A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction[J]. Journal of Radars, 2017, 6(6): 640-652. doi: 10.12000/JR17043
    [9]Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020
    [10]Yin Qiang, Li Yang, Huang Ping-ping, Lin Yun, Hong Wen. Analysis of InSAR Coherence Loss Caused by Soil Moisture Variation(in English)[J]. Journal of Radars, 2015, 4(6): 689-697. doi: 10.12000/JR15075
    [11]Deng Yuan, Li Yin-wei, Xiang Mao-sheng, Wei Li-deng. Performance Analysis of Measurement Inaccuracies of IMU/GPS on Airborne Repeat-pass Interferometric SAR in the Presence of Squint[J]. Journal of Radars, 2014, 3(4): 428-438. doi: 10.3724/SP.J.1300.2014.13141
    [12]Liu Zhong-sheng, Wang Bing-nan, Xiang Mao-sheng, Chen Long-yong. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation[J]. Journal of Radars, 2014, 3(2): 183-191. doi: 10.3724/SP.J.1300.2014.14015
    [13]Shi Jun, Ma Long, Wei Shun-jun, Shi Dai-qi, Zhang Xiao-ling, Chen Gang. Ka-band InSAR Imaging and Analysis Based on IMU Data[J]. Journal of Radars, 2014, 3(1): 19-27. doi: 10.3724/SP.J.1300.2014.13142
    [14]Xu Li-ying, Li Shi-qiang, Deng Yun-kai, Wang Yu. Improved Three-stage Algorithm of Forest Height Retrieval with PolInSAR[J]. Journal of Radars, 2014, 3(1): 28-34. doi: 10.3724/SP.J.1300.2014.13089
    [15]Zeng Tao Ao Dong-yang Hu Cheng Zhang Tian, . Multiangle Bistatic SAR Imaging and Fusion Based on BeiDou-2 Navigation Satellite System[J]. Journal of Radars, 2014, 3(6): 632-640. doi: 10.12000/JR14121
    [16]Tian Wei-ming, Zeng Tao, Hu Cheng. Imaging Algorithm for Bistatic SAR Based on GNSS Signal[J]. Journal of Radars, 2013, 2(1): 39-45. doi: 10.3724/SP.J.1300.2012.20092
    [17]Lin Xue, Li Fang-fang, Hu Dong-hui, Ding Chi-biao. Performance Analysis of Flat Surface Assumption and Residual Motion Errors on Airborne Repeat-pass InSAR[J]. Journal of Radars, 2013, 2(3): 334-347. doi: 10.3724/SP.J.1300.2013.13013
    [18]Li Yan-lei, Liang Xing-dong, Ding Chi-biao. Error Comparison and Analysis of the Two-pass and Three-pass Approaches in Airborne D-InSAR[J]. Journal of Radars, 2013, 2(3): 326-333. doi: 10.3724/SP.J.1300.2013.13034
    [19]Li Yin-wei, Wei Li-deng, Xiang Mao-sheng. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR[J]. Journal of Radars, 2013, 2(4): 492-498. doi: 10.3724/SP.J.1300.2013.13040
    [20]Mao Yong-fei, Wang Xiao-jie, Xiang Mao-sheng. Joint Three-dimensional Location Algorithm for Airborne Interferometric SAR System[J]. Journal of Radars, 2013, 2(1): 60-67. doi: 10.3724/SP.J.1300.2012.20107
  • Cited by

    Periodical cited type(14)

    1. 董孟琛,杨剑,李传祥,李伙明. 一种基于复合滤波的海面雷达距离多普勒图像去噪算法. 火箭军工程大学学报. 2025(01): 13-20 .
    2. 汪翔,王彦斌,汪育苗,崔国龙. 基于图神经网络的多尺度特征融合雷达目标检测方法. 雷达科学与技术. 2025(01): 39-47 .
    3. 施端阳,林强,胡冰,杜小帅. 基于YOLO的航管一次雷达目标检测方法. 系统工程与电子技术. 2024(01): 143-151 .
    4. 周利,胡杰民,付连庆,凌三力. 基于MDCFT与水平集的高海情弹载雷达成像检测方法. 系统工程与电子技术. 2024(04): 1247-1254 .
    5. 汪翔,汪育苗,陈星宇,臧传飞,崔国龙. 基于深度学习的多特征融合海面目标检测方法. 雷达学报. 2024(03): 554-564 . 本站查看
    6. 许述文,何绮,茹宏涛. 基于无监督图互信息最大化的海面小目标异常检测. 电子与信息学报. 2024(07): 2712-2720 .
    7. 关键,伍僖杰,丁昊,刘宁波,黄勇,曹政,魏嘉彧. 基于三维凹包学习算法的海面小目标检测方法. 电子与信息学报. 2023(05): 1602-1610 .
    8. 薛安克,毛克成,张乐. 多分类器联合虚警可控的海上小目标检测方法. 电子与信息学报. 2023(07): 2528-2536 .
    9. 施赛楠,姜丽,李东宸,吴旭姿. 基于双重虚警控制XGBoost的海面小目标检测. 雷达科学与技术. 2023(03): 314-323+328 .
    10. 刘安邦,施赛楠,杨静,曹鼎. 基于虚警可控梯度提升树的海面小目标检测. 南京信息工程大学学报(自然科学版). 2022(03): 341-347 .
    11. 许述文,茹宏涛. 基于标签传播算法的海面漂浮小目标检测方法. 电子与信息学报. 2022(06): 2119-2126 .
    12. 关键,伍僖杰,丁昊,刘宁波,董云龙,张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法. 电子与信息学报. 2022(07): 2449-2460 .
    13. 施端阳,林强,胡冰,张馨予. 深度学习在雷达目标检测中的应用综述. 雷达科学与技术. 2022(06): 589-605 .
    14. 伍僖杰,丁昊,刘宁波,关键. 基于时频脊-Radon变换的海面小目标检测方法. 信号处理. 2021(09): 1599-1611 .

    Other cited types(22)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.1 %FULLTEXT: 21.1 %META: 71.0 %META: 71.0 %PDF: 7.9 %PDF: 7.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.7 %其他: 17.7 %其他: 0.3 %其他: 0.3 %China: 0.4 %China: 0.4 %India: 0.0 %India: 0.0 %Kao-sung: 0.1 %Kao-sung: 0.1 %Rochester: 0.0 %Rochester: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.3 %[]: 0.3 %上海: 2.1 %上海: 2.1 %东莞: 0.3 %东莞: 0.3 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %九江: 0.1 %九江: 0.1 %休斯敦: 0.1 %休斯敦: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰州: 0.1 %兰州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 13.4 %北京: 13.4 %十堰: 0.0 %十堰: 0.0 %南京: 1.2 %南京: 1.2 %南宁: 0.0 %南宁: 0.0 %南昌: 0.1 %南昌: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商洛: 0.0 %商洛: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %固原: 0.1 %固原: 0.1 %多伦多: 0.1 %多伦多: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.0 %太原: 0.0 %威海: 0.0 %威海: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.0 %宿迁: 0.0 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %广州: 0.8 %广州: 0.8 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 1.0 %张家口: 1.0 %张家口市: 0.0 %张家口市: 0.0 %德州: 0.0 %德州: 0.0 %忻州市代县: 0.1 %忻州市代县: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.2 %扬州: 0.2 %新乡: 0.6 %新乡: 0.6 %无锡: 0.3 %无锡: 0.3 %昆明: 0.4 %昆明: 0.4 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.3 %杭州: 1.3 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.2 %桂林: 0.2 %武汉: 0.3 %武汉: 0.3 %永州: 0.1 %永州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泰安: 0.2 %泰安: 0.2 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.0 %温州: 0.0 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.2 %漯河: 0.2 %玉林: 0.0 %玉林: 0.0 %石家庄: 0.6 %石家庄: 0.6 %石家庄市: 0.0 %石家庄市: 0.0 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽伦堡: 0.1 %纽伦堡: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %罗拉赫: 0.1 %罗拉赫: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 16.0 %芒廷维尤: 16.0 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.4 %苏州: 0.4 %莫斯科: 0.1 %莫斯科: 0.1 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 28.6 %西宁: 28.6 %西安: 1.6 %西安: 1.6 %西安市: 0.0 %西安市: 0.0 %贵港: 0.4 %贵港: 0.4 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.2 %重庆: 0.2 %钱德勒: 0.2 %钱德勒: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 1.3 %长沙: 1.3 %长治: 0.1 %长治: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %随州: 0.0 %随州: 0.0 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.1 %驻马店: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaIndiaKao-sungRochesterUnited States[]上海东莞丹东乌鲁木齐九江休斯敦佛山保定兰州包头北京十堰南京南宁南昌厦门台北台州合肥吉林呼和浩特哥伦布商洛嘉兴固原多伦多大连天津太原威海宝鸡宣城宿迁常州常德广州延安开封张家口张家口市德州忻州市代县成都扬州新乡无锡昆明晋城朝阳杭州格兰特县桂林武汉永州沈阳沧州泰安泰米尔纳德洛阳济南淮南淮安深圳温州湖州湘潭漯河玉林石家庄石家庄市福州秦皇岛纽伦堡纽约绍兴罗奥尔凯埃罗拉赫美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科衡水衡阳衢州西宁西安西安市贵港运城邯郸郑州重庆钱德勒长春长沙长治阿姆斯特丹随州青岛驻马店黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2563) PDF downloads(148) Cited by(36)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint