Volume 9 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
TAN Pengyuan, ZHU Jianjun, FU Haiqiang, et al. Inversion of forest height based on ALOS-2 PARSAR-2 multi-baseline polarimetric SAR interferometry data[J]. Journal of Radars, 2020, 9(3): 569–577. doi: 10.12000/JR20030
Citation: TAN Pengyuan, ZHU Jianjun, FU Haiqiang, et al. Inversion of forest height based on ALOS-2 PARSAR-2 multi-baseline polarimetric SAR interferometry data[J]. Journal of Radars, 2020, 9(3): 569–577. doi: 10.12000/JR20030

Inversion of Forest Height Based on ALOS-2 PARSAR-2 Multi-baseline Polarimetric SAR Interferometry Data

DOI: 10.12000/JR20030
Funds:  The National Natural Science Foundation of China (41531068, 41820104005), Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring (2020-1), The Innovation Foundation for Postgraduate of Central South University (2019zzts656)
More Information
  • Corresponding author: ZHU Jianjun, zjj@csu.edu.cn
  • Received Date: 2020-04-02
  • Rev Recd Date: 2020-05-31
  • Available Online: 2020-06-13
  • Publish Date: 2020-06-01
  • To compensate for the limitations of insufficient observation information and simplistic geometric structure of single-baseline InSAR, this study proposes a new method for extracting forest height from ALOS-2 PARSAR-2 multi-baseline PolInSAR datas. Firstly, the Maximum Coherence Difference (MCD) algorithm is introduced to determine the polarization; this algorithm is very sensitive to volume scattering in the polarization space. Then, with the aid of a small amount of externally known forest height data, the coherence amplitude of the polarization is used to solve the temporal decorrelation semi-empirical scattering model. In addition, multi-baseline datas are further fused to increase the diversity of observation geometry and improve the reliability of the inversion results. To verify the effectiveness of the proposed method, we selected Huangfengqiao Forestry Center in Hunan, China as the study area and used three pairs of ALOS-2 PALSAR-2 interferometric images with 14-day temporal baseline for the experimental analysis. The experimental results showed that the method proposed in this study effectively improved the assumptions and addressed the limitation of the existing method that is only applicable to single-baseline interferometric data. Thus, the inversion accuracy can be improved by at least 40%.

     

  • loading
  • [1]
    郭华东. 雷达对地观测理论与应用[M]. 北京: 科学出版社, 2000: 126–131.

    GUO Huadong. Radar for Earth Observation[M]. Beijing: Science Press, 2000: 126–131.
    [2]
    TREUHAFT R N, MADSEN S N, MOGHADDAM M, et al. Vegetation characteristics and underlying topography from interferometric radar[J]. Radio Science, 1996, 31(6): 1449–1485. doi: 10.1029/96rs01763
    [3]
    PAPATHANASSIOU K P and CLOUDE S R. Single-baseline polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352–2363. doi: 10.1109/36.964971
    [4]
    CLOUDE S R and PAPATHANASSIOU K P. Three-stage inversion process for polarimetric SAR interferometry[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 125–134. doi: 10.1049/ip-rsn:20030449
    [5]
    PRAKS J, KUGLER F, PAPATHANASSIOU K P, et al. Height estimation of boreal forest: Interferometric model-based inversion at L- and X-band versus HUTSCAT profiling scatterometer[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 466–470. doi: 10.1109/LGRS.2007.898083
    [6]
    HAJNSEK I, KUGLER F, LEE S K, et al. Tropical-forest-parameter estimation by means of Pol-InSAR: The INDREX-II campaign[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 481–493. doi: 10.1109/TGRS.2008.2009437
    [7]
    FU Haiqiang, WANG Changcheng, ZHU Jianjun, et al. Inversion of vegetation height from PolInSAR using complex least squares adjustment method[J]. Science China Earth Sciences, 2015, 58(6): 1018–1031. doi: 10.1007/s11430-015-5070-1
    [8]
    LEI Yang and SIQUEIRA P. Estimation of forest height using spaceborne repeat-pass L-band InSAR correlation magnitude over the US state of maine[J]. Remote Sensing, 2014, 6(11): 10252–10285. doi: 10.3390/rs61110252
    [9]
    LAVALLE M and HENSLEY S. Extraction of structural and dynamic properties of forests from polarimetric-interferometric SAR data affected by temporal decorrelation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4752–4767. doi: 10.1109/TGRS.2015.2409066
    [10]
    PAPATHANASSIOU K P and CLOUDE S R. The effect of temporal decorrelation on the inversion of forest parameters from Pol-InSAR data[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003. doi: 10.1109/IGARSS.2003.1294134.
    [11]
    LEI Yang, SIQUEIRA P, TORBICK N, et al. Generation of large-scale moderate-resolution forest height mosaic with spaceborne repeat-pass SAR interferometry and lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 770–787. doi: 10.1109/TGRS.2018.2860590
    [12]
    CLOUDE S R and PAPATHANASSIOU K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551–1565. doi: 10.1109/36.718859
    [13]
    NEUMANN M, FERRO-FAMIL L, and REIGBER A. Pol-InSAR coherence set theory and application[C]. The 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.
    [14]
    许丽颖, 李世强, 邓云凯, 等. 基于极化干涉SAR反演植被高度的改进三阶段算法[J]. 雷达学报, 2014, 3(1): 28–34. doi: 10.3724/SP.J.1300.2014.13089

    XU Liying, LI Shiqiang, DENG Yunkai, et al. Improved three-stage algorithm of forest height retrieval with PolInSAR[J]. Journal of Radars, 2014, 3(1): 28–34. doi: 10.3724/SP.J.1300.2014.13089
    [15]
    白璐, 曹芳, 洪文. 相干区域长轴的快速估计方法及其应用[J]. 电子与信息学报, 2010, 32(3): 548–553. doi: 10.3724/SP.J.1146.2009.00211

    BAI Lu, CAO Fang, and HONG Wen. Fast approach to estimate the longest axis in coherence region and its applications[J]. Journal of Electronics &Information Technology, 2010, 32(3): 548–553. doi: 10.3724/SP.J.1146.2009.00211
    [16]
    BAMLER R and HARTL P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4): R1–R54. doi: 10.1088/0266-5611/14/4/001
    [17]
    MOON T K and STIRLING W C. Mathematical Methods and Algorithms for Signal Processing[M]. New Jersey: Prentice Hall, 2000.
    [18]
    LAVALLE M, SOLIMINI D, POTTIER E, et al. Forest parameters inversion using polarimetric and interferometric SAR data[C]. 2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa, 2009. doi: 10.1109/IGARSS.2009.5417355.
    [19]
    DENBINA M, SIMARD M, and HAWKINS B. Forest height estimation using multibaseline PolInSAR and sparse lidar data fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3415–5433. doi: 10.1109/JSTARS.2018.2841388
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2900) PDF downloads(247) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint