ZHANG Dalin, YI Wei, and KONG Lingjiang. Optimal joint allocation of multijammer resources for jamming netted radar system[J]. Journal of Radars, 2021, 10(4): 595–606. doi: 10.12000/JR21071
Citation: XIAO Dongling and LIU Chang. PolSAR terrain classification based on fine-tuned dilated group-cross convolution neural network[J]. Journal of Radars, 2019, 8(4): 479–489. doi: 10.12000/JR19039

PolSAR Terrain Classification Based on Fine-tuned Dilated Group-cross Convolution Neural Network

DOI: 10.12000/JR19039
Funds:  The National Natural Science Foundation of China (61471340), The State Key Research Development Program (2017YFB0503001)
More Information
  • Corresponding author: LIU Chang, cliu@mail.ie.ac.cn
  • Received Date: 2019-03-04
  • Rev Recd Date: 2019-03-19
  • Available Online: 2019-05-05
  • Publish Date: 2019-08-28
  • In the study of the terrain classification based on the Polarimetric Synthetic Aperture Radar (PolSAR), the algorithms based on general CNN do not fully utilize the phase information in different channels, and the pixel-by-pixel classification strategy with extensive redundant computation is inefficient. To mitigate these problems, a deep pixel-to-pixel mapping model in the complex domain is used for achieving a fast and accurate PolSAR terrain classification at a low sampling rate. To completely utilize the phase information, this study uses Group-Cross CNN to extend the original model to the complex domain allowing complex-number input signals and significantly improving the classification accuracy. In addition, to speed up the algorithm, a Fine-tuned Dilated Group-Cross CNN (FDGC-CNN) was adopted to directly achieve pixel-to-pixel mapping as well as improve accuracy. We verified the adopted model on two PolSAR images comprising 16 classes terrains from the AIRSAR and 4 classes terrains from the E-SAR. According to our model, the overall classification accuracies were 96.94% and 90.07% respectively while the running time was 4.22 s and 4.02 s respectively. Therefore, FDGC-CNN achieved better accuracy with higher efficiency compared to SVM and traditional CNN.

     

  • [1]
    YANG Wen, ZHONG Neng, YANG Xiangli, et al. Rie-mannian sparse coding for classification of PolSAR images[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 5698–5701. doi: 10.1109/IGARSS.2016.7730488.
    [2]
    张祥, 邓喀中, 范洪冬, 等. 基于目标分解的极化SAR图像SVM监督分类[J]. 计算机应用研究, 2013, 30(1): 295–298. doi: 10.3969/j.issn.1001-3695.2013.01.076

    ZHANG Xiang, DENG Kazhong, FAN Hongdong, et al. PolSAR SVM supervised classification method combining with polarimetric target decomposition[J]. Application Re-search of Computers, 2013, 30(1): 295–298. doi: 10.3969/j.issn.1001-3695.2013.01.076
    [3]
    ZHANG Hongsheng, ZHANG Yuanzhi, and LIN Hui. Urban land cover mapping using random forest combined with optical and SAR data[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012: 6809–6812. doi: 10.1109/IGARSS.2012.6352600.
    [4]
    ZHANG Guangyun and JIA Xiuping. Simplified conditional random fields with class boundary constraint for spec-tral-spatial based remote sensing image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 856–860. doi: 10.1109/LGRS.2012.2186279
    [5]
    ZHANG Zhimian, WANG Haipeng, XU Feng, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188. doi: 10.1109/TGRS.2017.2743222
    [6]
    徐真, 王宇, 李宁, 等. 一种基于CNN的SAR图像变化检测方法[J]. 雷达学报, 2017, 6(5): 483–491. doi: 10.12000/JR17075

    XU Zhen, WANG R, LI Ning, et al. A novel approach to change detection in SAR images with CNN classification[J]. Journal of Radars, 2017, 6(5): 483–491. doi: 10.12000/JR17075
    [7]
    BI Haixia, SUN Jian, and XU Zongben. A graph-based semisupervised deep learning model for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2116–2132. doi: 10.1109/TGRS.2018.2871504
    [8]
    CHEN Siwei and TAO Chensong. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 627–631. doi: 10.1109/LGRS.2018.2799877
    [9]
    CHEN Siwei, TAO Chensong, WANG Xuesong, et al. PolSAR target classification using polarimetric-feature-driven deep convolutional neural network[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018. doi: 10.1109/IGARSS.2018.8518529.
    [10]
    KONG J A, SWARTZ A A, YUEH H A, et al. Identification of terrain cover using the optimum polarimetric classifier[J]. Journal of Electromagnetic Waves and Applications, 1988, 2(2): 171–194.
    [11]
    LEE J S, GRUNES M R, and KWOK R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1994, 15(11): 2299–2311. doi: 10.1080/01431169408954244
    [12]
    KOUSKOULAS Y, ULABY F T, and PIERCE L E. The Bayesian Hierarchical Classifier (BHC) and its application to short vegetation using multifrequency polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(2): 469–477. doi: 10.1109/TGRS.2003.821066
    [13]
    邹焕新, 罗天成, 张月, 等. 基于组合条件随机场的极化SAR图像监督地物分类[J]. 雷达学报, 2017, 6(5): 541–553. doi: 10.12000/JR16109

    ZOU Huanxin, LUO Tiancheng, ZHANG Yue, et al. Combined conditional random fields model for supervised PolSAR images classification[J]. Journal of Radars, 2017, 6(5): 541–553. doi: 10.12000/JR16109
    [14]
    YU F and KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015.
    [15]
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 3431–3440. doi: 10.1109/CVPR.2015.7298965.
    [16]
    BADRINARAYANAN V, KENDALL A, and CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. arXiv preprint ar-Xiv: 1511.00561, 2015.
    [17]
    RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmenta-tion[C]. Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Inter-vention, Munich, Germany, 2015: 234–241.
    [18]
    BENGIO Y, LECUN Y, NOHL C, et al. LeRec: A NN/HMM hybrid for on-line handwriting recognition[J]. Neural Computation, 1995, 7(6): 1289–1303. doi: 10.1162/neco.1995.7.6.1289
    [19]
    NAIR V and HINTON G E. Rectified linear units improve restricted boltzmann machines[C]. Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 2010: 807–814.
    [20]
    SHANG W, SOHN K, ALMEIDA D, et al. Understanding and improving convolutional neural networks via concatenated rectified linear units[C]. International Conference on Machine Learning, 2016: 2217–2225.
    [21]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level per-formance on imagenet classification[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1026–1034. doi: 10.1109/ICCV.2015.123.
    [22]
    SIMONYAN K and ZISSERMAN A. Very deep convolu-tional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014.
    [23]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al.. Identity mappings in deep residual networks[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 630–645.
    [24]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [25]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 2261–2269. doi: 10.1109/CVPR.2017.243
    [26]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109.ICCV.2017.324.
    [27]
    HOEKMAN D H and VISSERS M A M. A new polarimetric classification approach evaluated for agricultural crops[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2881–2889. doi: 10.1109/TGRS.2003.817795
    [28]
    HOU Biao, KOU Hongda, and JIAO Licheng. Classification of polarimetric SAR images using multilayer autoencoders and superpixels[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3072–3081. doi: 10.1109/JSTARS.2016.2553104
    [29]
    GUO Yanhe, WANG Shuang, GAO Chenqiong, et al. Wishart RBM based DBN for polarimetric synthetic radar data classification[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015: 1841–1844. doi: 10.1109/IGARSS.2015.7326150.
  • Relative Articles

    [1]LIAO Xiaorong, SUN Guohao, ZHONG Suchuan, YU Xianxiang, LI Ming. Joint Optimization of Radar and Jammer Space-time Cooperative Beamforming for a Multitasking Dynamic Scene[J]. Journal of Radars, 2024, 13(3): 613-628. doi: 10.12000/JR23243
    [2]YANG Shixing, ZHANG Guoxin, LIANG Yunfei, YI Wei, KONG Lingjiang. Moving Targets Detection with Low-bit Quantization in Distributed Radar on Moving Platforms[J]. Journal of Radars, 2024, 13(3): 584-600. doi: 10.12000/JR23240
    [3]LIU Xin, ZHU Haibin, LIU Zongqiang, XUE Changhu, MU Yaxin, QU Xiaodong, YE Shengbo, XIA Zhenghuan, FANG Guangyou. The Design and Joint Positioning Method of an ultra-wideband Through-wall Radar System for Distributed Wireless Networking[J]. Journal of Radars, 2024, 13(4): 747-760. doi: 10.12000/JR23239
    [4]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [5]SHI Chenguang, TANG Zhicheng, ZHOU Jianjiang, YAN Junkun, WANG Ziwei. Joint Collaborative Radar Selection and Transmit Resource Allocation in Multiple Distributed Radar Networks with Imperfect Detection Performance[J]. Journal of Radars, 2024, 13(3): 565-583. doi: 10.12000/JR23081
    [6]GUO Rui, ZHANG Yue, TIAN Biao, XIAO Yu, HU Jun, XU Shiyou, CHEN Zengping. Review of the Technology, Development and Applications of Holographic Staring Radar[J]. Journal of Radars, 2023, 12(2): 389-411. doi: 10.12000/JR22153
    [7]SHI Chenguang, DONG Jing, ZHOU Jianjiang. Joint Transmit Power and Dwell Time Allocation for Multitarget Tracking in Radar Networks under Spectral Coexistence[J]. Journal of Radars, 2023, 12(3): 590-601. doi: 10.12000/JR22146
    [8]QI Cheng, XIE Junwei, ZHANG Haowei, DING Zihang, YANG Xiao. Element Configuration Optimization of Hybrid Distributed PA-MIMO Radar System Based on Target Detection[J]. Journal of Radars, 2023, 12(3): 576-589. doi: 10.12000/JR22159
    [9]YI Wei, YUAN Ye, LIU Guanghong, GE Jianjun, KONG Lingjiang, YANG Jianyu. Recent Advances in Multi-radar Collaborative Surveillance: Cognitive Tracking and Resource Scheduling Algorithms[J]. Journal of Radars, 2023, 12(3): 471-499. doi: 10.12000/JR23036
    [10]ZHU Hongyu, HE Lili, LIU Zheng, XIE Rong, RAN Lei. Online Decision-making Method for Frequency-agile Radar Based on Multi-Armed Bandit[J]. Journal of Radars, 2023, 12(6): 1263-1274. doi: 10.12000/JR23206
    [11]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [12]SONG Xiaocheng, LI Zhi, REN Haiwei, YI Wei. Threat-driven Resource Allocation Algorithm for Distributed Netted Phased Array Radars[J]. Journal of Radars, 2023, 12(3): 629-641. doi: 10.12000/JR22240
    [13]WANG Yuedong, GU Yijing, LIANG Yan, WANG Zengfu, ZHANG Huixia. Deep Game of Escorting Suppressive Jamming and Networked Radar Power Allocation[J]. Journal of Radars, 2023, 12(3): 642-656. doi: 10.12000/JR23023
    [14]XIAO Peng, YU Zhitong, CHEN Zhuoqi, CUI Xiangbin, ZHAO Bo, LANG Shinan, LI Meng, HU Luojia, HUANG Yan, LIU Min, WANG Cheng, CHEN Liang, LIU Lu, SUI Xiaohong, YUAN Chunzhu. Orbital Radar Sounding of Earth’s Ice Sheets: Opportunities and Challenges[J]. Journal of Radars, 2022, 11(3): 479-498. doi: 10.12000/JR21196
    [15]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [16]ZHANG Guoxin, YI Wei, KONG Lingjiang. Direct Position Determination for Massive MIMO System with One-bit Quantization[J]. Journal of Radars, 2021, 10(6): 970-981. doi: 10.12000/JR21062
    [17]GAO Xiangying, ZHAO Yongjun, LIU Zhixin, LIU Chengcheng. Robust Source Localization Using TDOA and FDOA with Receiver Location Errors [J]. Journal of Radars, 2020, 9(5): 916-924. doi: 10.12000/JR20039
    [18]PEI Jiazheng, HUANG Yong, DONG Yunlong, HE You, CHEN Xiaolong. Track-Before-Detect Algorithm Based on Improved Auxiliary Particle PHD Filter under Clutter Background[J]. Journal of Radars, 2019, 8(3): 355-365. doi: 10.12000/JR18060
    [19]Yang Haifeng, Xie Wenchong, Wang Yongliang. Modeling and Analysis of Multiple AEWs Coordinated Detection Radar System with Different Transmit Waveform[J]. Journal of Radars, 2017, 6(3): 267-274. doi: 10.12000/JR16142
    [20]Shi Chen-guang, Wang Fei, Zhou Jian-jiang, Chen Jun. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization (in English)[J]. Journal of Radars, 2014, 3(4): 465-473. doi: 10.3724/SP.J.1300.2014.13140
  • Cited by

    Periodical cited type(13)

    1. 胡继军,韩伟,张国玉,周希娃,贺杨婷,廖春兰. 基于多站数据融合的参数精估计方法. 遥测遥控. 2024(02): 109-123 .
    2. 赵宏宇,武忠国,李廷鹏,杨晓帆,陈冬冬. 射频信号合成与数字域信号合成的等效性分析. 电子信息对抗技术. 2024(03): 21-26 .
    3. 廖晓容,孙国皓,钟苏川,余显祥,李明. 面向多任务动态场景的雷达与干扰空时协同波束联合优化方法. 雷达学报. 2024(03): 613-628 . 本站查看
    4. 邹玮琦,牛朝阳,刘伟,王艳云,湛嘉祺. 面向组网雷达干扰任务的多机伴随式编队航迹预规划方法. 系统工程与电子技术. 2024(08): 2807-2819 .
    5. 刘溥熙,赵欣怡,尤明,田栢苓,马龙. 面向组网雷达干扰任务的多无人机协同动态决策方法研究. 战术导弹技术. 2024(06): 14-25 .
    6. 袁野,杨剑,刘辛雨,易伟,孔令讲. 基于任务效用最大化的多雷达协同任务规划算法. 雷达学报. 2023(03): 550-562 . 本站查看
    7. 王跃东,顾以静,梁彦,王增福,张会霞. 伴随压制干扰与组网雷达功率分配的深度博弈研究. 雷达学报. 2023(03): 642-656 . 本站查看
    8. 时晨光,董璟,周建江. 频谱共存下面向多目标跟踪的组网雷达功率时间联合优化算法. 雷达学报. 2023(03): 590-601 . 本站查看
    9. 齐铖,谢军伟,张浩为,丁梓航,杨潇. 基于目标检测的混合分布式PA-MIMO雷达系统阵元优化部署. 雷达学报. 2023(03): 576-589 . 本站查看
    10. 纪慧颖,潘明海,张元时,喻庆豪. 基于遗传-蚁群融合算法的干扰资源分配方法. 系统工程与电子技术. 2023(07): 2098-2107 .
    11. 陆德江,王星,陈游,胡星. 联合多种资源协同干扰组网雷达系统的自适应调度方法. 系统工程与电子技术. 2023(09): 2744-2754 .
    12. 梁猛,檀雷,陈飞,梁斌,杨帅. 协同干扰技术应用研究. 航天电子对抗. 2023(04): 44-48+64 .
    13. 李健涛,王轲昕,刘凯,张天贤. 基于深度强化学习的干扰资源分配方法. 现代雷达. 2023(10): 44-51 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.3 %其他: 17.3 %其他: 0.9 %其他: 0.9 %China: 0.3 %China: 0.3 %Hanoi: 0.0 %Hanoi: 0.0 %India: 0.0 %India: 0.0 %Kao-sung: 0.0 %Kao-sung: 0.0 %Korea Republic of: 0.3 %Korea Republic of: 0.3 %Viet Nam: 0.1 %Viet Nam: 0.1 %[]: 0.8 %[]: 0.8 %上海: 0.7 %上海: 0.7 %上饶: 0.1 %上饶: 0.1 %东京: 0.1 %东京: 0.1 %东莞: 0.0 %东莞: 0.0 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %京畿道: 0.5 %京畿道: 0.5 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %信阳: 0.1 %信阳: 0.1 %元朗新墟: 0.0 %元朗新墟: 0.0 %克孜勒苏: 0.0 %克孜勒苏: 0.0 %包头: 0.0 %包头: 0.0 %北京: 12.2 %北京: 12.2 %北海: 0.1 %北海: 0.1 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 1.7 %南京: 1.7 %南宁: 0.1 %南宁: 0.1 %南平: 0.0 %南平: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.0 %台州: 0.0 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %商丘: 0.1 %商丘: 0.1 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.0 %天津: 0.0 %威尔明顿: 0.1 %威尔明顿: 0.1 %官坑: 0.1 %官坑: 0.1 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.1 %宿迁: 0.1 %岳阳: 0.0 %岳阳: 0.0 %崇左: 0.0 %崇左: 0.0 %巴中: 0.3 %巴中: 0.3 %巴中市巴州区: 0.0 %巴中市巴州区: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.0 %张家口市: 0.0 %徐州: 0.1 %徐州: 0.1 %恩施: 0.0 %恩施: 0.0 %成都: 1.0 %成都: 1.0 %成都市新都区: 0.0 %成都市新都区: 0.0 %新乡: 0.4 %新乡: 0.4 %无锡: 0.4 %无锡: 0.4 %昆明: 0.0 %昆明: 0.0 %昭通: 0.1 %昭通: 0.1 %杭州: 1.3 %杭州: 1.3 %株洲: 0.0 %株洲: 0.0 %武汉: 0.7 %武汉: 0.7 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.0 %沈阳: 0.0 %沧州: 0.1 %沧州: 0.1 %泸州: 0.0 %泸州: 0.0 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.0 %温州: 0.0 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.3 %玉林: 0.3 %益山: 0.3 %益山: 0.3 %石家庄: 0.4 %石家庄: 0.4 %红河: 0.3 %红河: 0.3 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.2 %绍兴: 0.2 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %美国新泽西锡考克斯: 0.3 %美国新泽西锡考克斯: 0.3 %芒廷维尤: 14.5 %芒廷维尤: 14.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %苏州市: 0.1 %苏州市: 0.1 %衡水: 0.2 %衡水: 0.2 %西宁: 33.2 %西宁: 33.2 %西安: 1.0 %西安: 1.0 %西安市: 0.0 %西安市: 0.0 %西藏林芝: 0.1 %西藏林芝: 0.1 %贵港: 0.2 %贵港: 0.2 %运城: 0.4 %运城: 0.4 %连云港: 0.0 %连云港: 0.0 %郑州: 1.5 %郑州: 1.5 %金华: 0.0 %金华: 0.0 %长沙: 0.2 %长沙: 0.2 %雅加达: 0.2 %雅加达: 0.2 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.0 %驻马店: 0.0 %鹰潭: 0.1 %鹰潭: 0.1 %其他其他ChinaHanoiIndiaKao-sungKorea Republic ofViet Nam[]上海上饶东京东莞丹东丽水京畿道佛山保定信阳元朗新墟克孜勒苏包头北京北海华盛顿州南京南宁南平南昌南通厦门台北台州合肥呼和浩特哈尔滨商丘圣彼得堡大庆大连天津威尔明顿官坑宝鸡宣城宿迁岳阳崇左巴中巴中市巴州区常州广州张家口张家口市徐州恩施成都成都市新都区新乡无锡昆明昭通杭州株洲武汉汕头沈阳沧州泸州洛阳济南深圳温州湖州湘潭漯河潍坊玉林益山石家庄红河纽约绍兴美国伊利诺斯芝加哥美国新泽西锡考克斯芒廷维尤芝加哥苏州苏州市衡水西宁西安西安市西藏林芝贵港运城连云港郑州金华长沙雅加达青岛驻马店鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3543) PDF downloads(263) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint