Volume 6 Issue 5
Oct.  2017
Turn off MathJax
Article Contents
Zhang Yue, Zou Huanxin, Shao Ningyuan, et al.. Fast superpixel segmentation algorithm for PolSAR images[J]. Journal of Radars, 2017, 6(5): 564–573. DOI: 10.12000/JR17018
Citation: Zhang Yue, Zou Huanxin, Shao Ningyuan, et al.. Fast superpixel segmentation algorithm for PolSAR images[J]. Journal of Radars, 2017, 6(5): 564–573. DOI: 10.12000/JR17018

Fast Superpixel Segmentation Algorithm for PolSAR Images

DOI: 10.12000/JR17018
Funds:  The National Natural Science Foundation of China (61331015, 61372163)
  • Received Date: 2017-02-28
  • Rev Recd Date: 2017-07-04
  • Available Online: 2017-07-28
  • Publish Date: 2017-10-28
  • As a pre-processing technique, superpixel segmentation algorithms should be of high computational efficiency, accurate boundary adherence and regular shape in homogeneous regions. A fast superpixel segmentation algorithm based on Iterative Edge Refinement (IER) has shown to be applicable on optical images. However, it is difficult to obtain the ideal results when IER is applied directly to PolSAR images due to the speckle noise and small or slim regions in PolSAR images. To address these problems, in this study, the unstable pixel set is initialized as all the pixels in the PolSAR image instead of the initial grid edge pixels. In the local relabeling of the unstable pixels, the fast revised Wishart distance is utilized instead of the Euclidean distance in CIELAB color space. Then, a post-processing procedure based on dissimilarity measure is empolyed to remove isolated small superpixels as well as to retain the strong point targets. Finally, extensive experiments based on a simulated image and a real-world PolSAR image from Airborne Synthetic Aperture Radar (AirSAR) are conducted, showing that the proposed algorithm, compared with three state-of-the-art methods, performs better in terms of several commonly used evaluation criteria with high computational efficiency, accurate boundary adherence, and homogeneous regularity.

     

  • loading
  • [1]
    Song H, Yang W, Xu X, et al.. Unsupervised PolSAR imagery classification based on Jensen-Bregman LogDet divergence[C]. European Conference on Synthetic Aperture Radar, EUSAR, Berlin, 2014: 1–4.
    [2]
    孙勋, 黄平平, 涂尚坦,等. 利用多特征融合和集成学习的极化SAR图像分类[J]. 雷达学报, 2016, 5(6): 692–700.

    Sun Xun, Huang Pingping, Tu Shangtan, et al. Polarimetric SAR image classification using multiple-feature fusion and ensemble learning[J]. Journal of Radars, 2016, 5(6): 692–700.
    [3]
    Dabboor M, Collins M J, Karathanassi V, et al. An unsupervised classification approach for polarimetric SAR data based on the Chernoff distance for complex Wishart distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4200–4213. DOI: 10.1109/TGRS.2012.2227755.
    [4]
    滑文强, 王爽, 侯彪. 基于半监督学习的SVM-Wishart极化SAR图像分类方法[J]. 雷达学报, 2015, 4(2): 93–98.

    Hua Wenqiang, Wang Shuang, and Hou Biao. Semi-supervised learning for classification of polarimetric SAR images based on SVM-Wishart[J]. Journal of Radars, 2015, 4(2): 93–98.
    [5]
    Xu Q, Chen Q H, Yang S, et al. Superpixel-based classification using K distribution and spatial context for polarimetric SAR images[J]. Rmote Sensing, 2016, 8(8): 619. DOI: 10.3390/rs8080619.
    [6]
    Wu Y H, Ji K F, Yu W X, et al. Region-based classification of polarimetric SAR images using Wishart MRF[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 668–672. DOI: 10.1109/LGRS.2008.2002263.
    [7]
    Ren X and Malik J. Learning a classification model for segmentation[C]. IEEE International Conference on Computer Vision. Nice, France, 2003: 10–17.
    [8]
    Gong M G, Su L Z, Jia M, et al. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1): 98–109. DOI: 10.1109/TFUZZ.2013.2249072.
    [9]
    Xie L, Zhang H, Wang C, et al.. Superpixel-based PolSAR images change detection[C]. 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015.
    [10]
    Wang S, Lu H, Yang F, et al.. Superpixel tracking[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 1323–1330.
    [11]
    Liu B, Hu H, Wang H Y, et al. Superpixel-based classification with an adaptive number of classes for polarimetric sar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 907–924. DOI: 10.1109/TGRS.2012.2203358.
    [12]
    Xiang D L, Tang T, Zhao L J, et al. Superpixel generating algorithm based on pixel intensity and location similarity for SAR image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1414–1418. DOI: 10.1109/LGRS.2013.2259214.
    [13]
    Xing Y X, Zhang Y, Li N, et al. Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features[J]. Journal of Applied Remote Sensing, 2016, 10(2): 026026. DOI: 10.1117/1.JRS.10.026026.
    [14]
    Liu M Y, Tuzel O, Ramalingam S, et al.. Entropy rate superpixel segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2011: 2097–2104.
    [15]
    Zhang Y H, Hartley R, Mashford J, et al.. Superpixels via pseudo-Boolean optimization[C]. IEEE International Conference on Computer Vision, Barcelona, 2011: 1387–1394.
    [16]
    Vedaldi A and Soatto S. Quick shift and kernel methods for mode seeking[C]. European Conference on Computer Vision, Berlin, 2008: 705–718.
    [17]
    Mester R, Conrad C, and Guevara A. Multichannel Segmentation Using Contour Relaxation: Fast Super-Pixels and Temporal Propagation[M]. Heyden A and Kahl F, eds. Image Analysis. Berlin Heidelberg: Springer, 2011.
    [18]
    Den Bergh M V, Boix X, Roig G, et al. SEEDS: Superpixels extracted via energy-driven sampling[J]. International Journal of Computer Vision, 2015, 111(3): 298–314. DOI: 10.1007/s11263-014-0744-2.
    [19]
    Achanta R, Shaji A, Smith K, et al.. SLIC superpixels[R]. EPFL, 2010.
    [20]
    Zou H, Qin X, Zhou S, et al. A likelihood-based SLIC superpixel algorithm for SAR images using generalized Gamma distribution[J]. Sensors, 2016, 16(7): E1107. DOI: 10.3390/s16071107.
    [21]
    Feng J L, Cao Z J, and Pi Y M. Polarimetric contextual classification of PolSAR images using sparse representation and superpixels[J]. Remote Sensing, 2014, 6(8): 7158–7181. DOI: 10.3390/rs6087158.
    [22]
    Qin F C, Guo J M, and Lang F K. Superpixel segmentation for polarimetric SAR imagery using local iterative clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 13–17. DOI: 10.1109/LGRS.2014.2322960.
    [23]
    Zhu S, Cao D, Jiang S, et al. Fast superpixel segmentation by iterative edge refinement[J]. Electronics Letters, 2015, 51(3): 230–232. DOI: 10.1049/el.2014.3379.
    [24]
    Jiao L C and Liu F. Wishart deep stacking network for fast PolSAR image classification[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3273–3286. DOI: 10.1109/TIP.2016.2567069.
    [25]
    Kersten P R, Lee J S, and Ainsworth T L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 519–527. DOI: 10.1109/TGRS.2004.842108.
    [26]
    Abramowitz M and Stegun I A. Handbook of Mathmatical Functions[M]. New York: Dover Pub. Inc., 1968.
    [27]
    Conradsen K, Nielsen A A, Schou J, et al. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 4–19. DOI: 10.1109/TGRS.2002.808066.
    [28]
    Qin X X, Zou H X, Zhou S L, et al. Simulation of spatially correlated PolSAR images using inverse transform method[J]. Journal of Applied Remote Sensing, 2015, 9(1): 095082. DOI: 10.1117/1.JRS.9.095082.
    [29]
    Arbelaez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(5): 898–916.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3442) PDF downloads(766) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint