Hao Tianduo, Cui Chen, Gong Yang, Sun Congyi. Waveform Design for Cognitive Radar Under Low PAR Constraints by Convex Optimization[J]. Journal of Radars, 2018, 7(4): 498-506. doi: 10.12000/JR18002
Citation: Yu Fan, Yuan Jie. A Modified Two-scale Microwave Scattering Model for a Dielectric Randomly Rough Surface(in English)[J]. Journal of Radars, 2015, 4(5): 560-570. doi: 10.12000/JR15067

A Modified Two-scale Microwave Scattering Model for a Dielectric Randomly Rough Surface(in English)

DOI: 10.12000/JR15067
Funds:

Supported by the National Key Basic Research Program of China (2013CB733400), the National Natural Science Foundation of China (Grant Number: 41471299), and the Key Projects in the National Science and Technology Pillar Program (2012BAH28B03).

  • Received Date: 2015-05-28
  • Rev Recd Date: 2015-10-27
  • Publish Date: 2015-10-28
  • In this paper, we present a Modified Two-Scale Microwave (MTSM) scattering model to describe the scattering coefficient of naturally rough surfaces. The surface roughness is assumed to be Gaussian in the proposed model so that the surface height z(x, y) can be split into large- and small-scale components by the wavelet packet transform according to electromagnetic wavelength. We used the Kirchhoff Model(KM) and Small Perturbation Method (SPM) to estimate the backscattering coefficient of large- and small-scale roughness, respectively. The tilting effect caused by the slope of large-scale roughness was corrected when calculating the contribution of backscattering to small-scale roughness. The backscattering coefficient of the MTSM comprised the total backscattering contributions of surfaces with both scales of roughness. The MTSM was tested and validated using the Advanced Integral Equation Model (AIEM) for dielectric randomly rough surfaces. The accuracy of the MTSM showed favorable agreement with AIEM, both when the incident angle was less than 30 (i30) and when the surface roughness was small (ks=0.354).

     

  • [1]
    Valenzuela G R. Depolarization of EM waves by slightly rough surface[J]. IEEE Transactions on Antennas and Propagation, 1967, 15(4): 552-557.
    [2]
    Ulaby F T, Batlivala P, and Dobson M. Microwave backscatter dependence on surface roughness, soil moisture and soil texture: Part 1-Bare soil[J]. IEEE Transactions on Instrumentation and Measurement, 1978, 16(4): 286-295.
    [3]
    Jin Y Q. Theory and Method of Numerical Simulation of Composite Scattering from the Object and Randomly Rough Surface[M]. Beijing: Science Press , 2008: 5-15.
    [4]
    Beckmann P A and Spozzochino T. The Scattering of Electromagnetic Waves from Rough Surface[M]. New York: Macmillan Press, 1968: 20-35.
    [5]
    Fung A K. Theory of cross-polarized power returned from a random surface[J]. Applied Science Research, 1968, 18(1): 50-60.
    [6]
    Fung A K, Li Z, and Chen K S. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 356-369.
    [7]
    Wu T D, Chen K S, Shi J C, et al.. A transition model for the reflection coefficient in surface scattering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 2040-2050.
    [8]
    Wu T D and Chen K S. A reappraisal of the validity of the IEM model for backscattering from rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 743-753.
    [9]
    Ulaby F T, Moore P K, and Fung A K. Microwave Remote Sensing, Vol Ⅱ: Microwave Remote Sensing Fundamentals and Radiometry[M]. London: Addison Wesley Publishing Company Press, 1981: 6-18.
    [10]
    Brown G S. Backscattering from a Gaussian distributed perfectly conducting rough surface[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(3): 472-482.
    [11]
    Burrows M L. A reformulated boundary perturbation theory in electromagnetism and its application to a sphere[J]. Canadian Journal of Physics, 1967, 45(5): 1729-1743.
    [12]
    Wright J. A new model for sea clutter[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 217-223.
    [13]
    Burrows M L. On the composite model for rough surface scattering[J]. IEEE Transactions on Antennas and Propagation, 1973, 21(2): 241-243.
    [14]
    Mario L. Applied Stochastic Processes[M]. New York: John Wiley and Sons Press, 1996: 55-62.
    [15]
    Fang Z B. Stochastic Processes[M]. Beijing: Science Press, 2011: 10-25.
    [16]
    Beckmann P. Scattering by non-Gaussian surfaces[J]. IEEE Transactions on Antennas and Propagation, 1975, 21(2): 169-175.
    [17]
    Chui C K. An Introduction to Wavelets[M]. New York: Academic Press, 1992: 22-34.
    [18]
    Hilton M L, Jawerth B D, and Sengupta A. Compressing still and moving images with wavelets[J]. Multimedia System, 1994, 2(3): 218-227.
    [19]
    Nielsen N H and Wickerhauser M V. Wavelets and time-frequency analysis[J]. Proceedings of the IEEE, 1996, 84(4): 523-540.
    [20]
    Strang G and Nguyen T Q. Wavelets and Filter Banks[M]. Wellesley: Wellesley-Cambridge Press, 1996: 103-134.
    [21]
    Fung A K. Exact Scattering from a Known Randomly Rough Surface[M]. Switzerland: URSI Commission Press, 1974: 2-8.
    [22]
    Valenzuela G R. Theories for the interaction of electromagnetic and oceanic waves - a review[J]. Boundary-Layer Meteorology, 1978, 13(1): 61-85.
    [23]
    Jin Y Q. Remote Sensing Theory of Electromagnetic Scattering and Thermal Emission[M]. Beijing: Science Press, 1993: 87-102.
  • Relative Articles

    [1]CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247
    [2]LI Yuxi, ZHU Ruichao, SUI Sai, JIA Yuxiang, DING Chang, HAN Yajuan, QU Shaobo, WANG Jiafu. Dynamic Electromagnetic Control Technology and its Application Based on Metasurface[J]. Journal of Radars. doi: 10.12000/JR24259
    [3]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [4]ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216
    [5]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [6]ZHOU Hongcheng, YU Xiaoran, WANG Yu, YAN Zhongming. Research Progress of Electrically Controlled Reconfigurable Polarization Manipulation Using Metasurface[J]. Journal of Radars, 2024, 13(3): 696-713. doi: 10.12000/JR23230
    [7]ZHOU Jingyi, ZHENG Shilie, YU Xianbin, HUI Xiaonan, ZHANG Xianmin. Reconfigurable Mode Vortex Beam Generation Based on Transmissive Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2022, 11(4): 728-735. doi: 10.12000/JR22021
    [8]LAN Lan, LIAO Guisheng, XU Jingwei, ZHU Shengqi, ZENG Cao, ZHANG Yuhong. Waveform Design and Signal Processing Method of a Multifunctional Integrated System Based on a Frequency Diverse Array(in English)[J]. Journal of Radars, 2022, 11(5): 850-870. doi: 10.12000/JR22163
    [9]JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167
    [10]YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061
    [11]LI Shangyang, FU Shilei, XU Feng. DNN-based Intelligent Beamforming on a Programmable Metasurface[J]. Journal of Radars, 2021, 10(2): 259-266. doi: 10.12000/JR21039
    [12]SHUANG Ya, LI Li, WANG Zhuo, WEI Menglin, LI Lianlin. Controllable Manipulation of Wi-Fi Signals Using Tunable Metasurface[J]. Journal of Radars, 2021, 10(2): 313-325. doi: 10.12000/JR21012
    [13]NIAN Yiheng, ZHOU Ningning, ZHU Shitao, ZHANG Anxue. Differential Coincidence Imaging Based on a Randomly Modulated Metamaterial Surface[J]. Journal of Radars, 2021, 10(2): 296-303. doi: 10.12000/JR20136
    [14]SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070
    [15]YANG Huanhuan, CAO Xiangyu, GAO Jun, LI Tong, LI Sijia, CONG Lili, ZHAO Xia. Recent Advances in Reconfigurable Metasurfaces and Their Applications[J]. Journal of Radars, 2021, 10(2): 206-219. doi: 10.12000/JR20137
    [16]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [17]JIANG Qian, WU Hao, WANG Yanyu. Airborne Multi-functional Maritime Surveillance Radar System Design and Key Techniques[J]. Journal of Radars, 2019, 8(3): 303-317. doi: 10.12000/JR19045
    [18]Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100
    [19]Hong Yongbin, Zhang Yong, Lu Zhenxing, Huang Wei. An Efficient Contrast-based Motion Compensation Algorithm for Stepped-frequency Radar[J]. Journal of Radars, 2016, 5(4): 378-388. doi: 10.12000/JR16068
    [20]Li Da-peng. A New Type of Moment Estimator for the K-distribution Shape Parameter with High Accuracy and Efficiency[J]. Journal of Radars, 2014, 3(4): 439-443. doi: 10.3724/SP.J.1300.2014.14017
  • Cited by

    Periodical cited type(8)

    1. 赵晓琛,赵东涛,袁航,王欢,张群. 低脉冲重复频率条件下无人机微动参数提取. 系统工程与电子技术. 2024(05): 1503-1513 .
    2. 李亚康,陈刚. 小角中子散射物理模型自动化筛选. 计算机工程. 2024(06): 56-64 .
    3. 李中余,桂亮,海宇,武俊杰,王党卫,王安乐,杨建宇. 基于变分模态分解与优选的超高分辨ISAR成像微多普勒抑制方法. 雷达学报. 2024(04): 852-865 . 本站查看
    4. CHEN Siyu,WANG Yong,CAO Rui. A high frequency vibration compensation approach for ultrahigh resolution SAR imaging based on sinusoidal frequency modulation Fourier-Bessel transform. Journal of Systems Engineering and Electronics. 2023(04): 894-905 .
    5. 唐波,谭思炜,张静远. 水下声探测系统载体振动干扰分析及抑制方法. 国防科技大学学报. 2022(06): 89-94 .
    6. 万显荣,谢德强,易建新,胡仕波,童云. 基于STFT谱图滑窗相消的微动杂波去除方法. 雷达学报. 2022(05): 794-804 . 本站查看
    7. 魏嘉琪,张磊,刘宏伟,盛佳恋. 曲线交叠外推的微动多目标宽带分辨算法. 电子与信息学报. 2019(12): 2889-2895 .
    8. 罗迎,龚逸帅,陈怡君,张群. 基于跟踪脉冲的MIMO雷达多目标微动特征提取. 雷达学报. 2018(05): 575-584 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.0 %FULLTEXT: 13.0 %META: 79.2 %META: 79.2 %PDF: 7.8 %PDF: 7.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.1 %其他: 0.1 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %United States: 0.0 %United States: 0.0 %[]: 0.3 %[]: 0.3 %三明: 0.0 %三明: 0.0 %上海: 1.3 %上海: 1.3 %东京: 0.0 %东京: 0.0 %东莞: 0.0 %东莞: 0.0 %中卫: 0.1 %中卫: 0.1 %临沂: 0.0 %临沂: 0.0 %乌海: 0.0 %乌海: 0.0 %亳州: 0.0 %亳州: 0.0 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.0 %佳木斯: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.0 %兰辛: 0.0 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 17.3 %北京: 17.3 %北京市: 0.2 %北京市: 0.2 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南宁: 0.1 %南宁: 0.1 %南昌: 0.0 %南昌: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.1 %台州: 0.1 %合肥: 0.5 %合肥: 0.5 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %圣地亚哥: 0.0 %圣地亚哥: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.4 %天津: 0.4 %太原: 0.0 %太原: 0.0 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %安阳: 0.2 %安阳: 0.2 %宣城: 0.1 %宣城: 0.1 %巴中: 0.0 %巴中: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 1.2 %张家口: 1.2 %张家口市: 0.1 %张家口市: 0.1 %怒江: 0.0 %怒江: 0.0 %成都: 0.3 %成都: 0.3 %扬州: 0.1 %扬州: 0.1 %新乡: 0.4 %新乡: 0.4 %无锡: 0.1 %无锡: 0.1 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.0 %昆明: 0.0 %昌吉: 0.0 %昌吉: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.3 %杭州: 1.3 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.0 %沧州: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %淄博: 0.0 %淄博: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.4 %深圳: 0.4 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.0 %烟台: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.0 %珠海: 0.0 %白城: 0.0 %白城: 0.0 %白银: 0.3 %白银: 0.3 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 12.6 %芒廷维尤: 12.6 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.0 %衢州: 0.0 %西宁: 37.8 %西宁: 37.8 %西安: 0.4 %西安: 0.4 %贵港: 0.2 %贵港: 0.2 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.1 %运城: 0.1 %连云港: 0.0 %连云港: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.3 %郑州: 1.3 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %银川: 0.1 %银川: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.0 %长春: 0.0 %长沙: 0.7 %长沙: 0.7 %长治: 0.0 %长治: 0.0 %防城港: 0.0 %防城港: 0.0 %青岛: 0.4 %青岛: 0.4 %鞍山: 0.0 %鞍山: 0.0 %黄冈: 0.1 %黄冈: 0.1 %龙岩: 0.0 %龙岩: 0.0 %其他其他ChinaIndiaUnited States[]三明上海东京东莞中卫临沂乌海亳州佛山佳木斯兰州兰辛加利福尼亚州包头北京北京市北海十堰南京南宁南昌厦门台北台州合肥呼和浩特哥伦布嘉兴圣地亚哥大连天津太原宁波安康安阳宣城巴中常州广州库比蒂诺张家口张家口市怒江成都扬州新乡无锡旧金山昆明昌吉朝阳杭州格兰特县武汉沈阳沧州洛阳济南淄博淮南深圳湖州湘潭滨州漯河潍坊烟台玉林珠海白城白银盐城石家庄福州秦皇岛纽约美国伊利诺斯芝加哥芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安贵港赤峰运城连云港邯郸郑州鄂州重庆银川镇江长春长沙长治防城港青岛鞍山黄冈龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2557) PDF downloads(1167) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint