Citation: | Yu Fan, Yuan Jie. A Modified Two-scale Microwave Scattering Model for a Dielectric Randomly Rough Surface(in English)[J]. Journal of Radars, 2015, 4(5): 560-570. doi: 10.12000/JR15067 |
In this paper, we present a Modified Two-Scale Microwave (MTSM) scattering model to describe the scattering coefficient of naturally rough surfaces. The surface roughness is assumed to be Gaussian in the proposed model so that the surface height z(x, y) can be split into large- and small-scale components by the wavelet packet transform according to electromagnetic wavelength. We used the Kirchhoff Model(KM) and Small Perturbation Method (SPM) to estimate the backscattering coefficient of large- and small-scale roughness, respectively. The tilting effect caused by the slope of large-scale roughness was corrected when calculating the contribution of backscattering to small-scale roughness. The backscattering coefficient of the MTSM comprised the total backscattering contributions of surfaces with both scales of roughness. The MTSM was tested and validated using the Advanced Integral Equation Model (AIEM) for dielectric randomly rough surfaces. The accuracy of the MTSM showed favorable agreement with AIEM, both when the incident angle was less than 30 (i30) and when the surface roughness was small (ks=0.354).
[1] |
Valenzuela G R. Depolarization of EM waves by slightly rough surface[J]. IEEE Transactions on Antennas and Propagation, 1967, 15(4): 552-557.
|
[2] |
Ulaby F T, Batlivala P, and Dobson M. Microwave backscatter dependence on surface roughness, soil moisture and soil texture: Part 1-Bare soil[J]. IEEE Transactions on Instrumentation and Measurement, 1978, 16(4): 286-295.
|
[3] |
Jin Y Q. Theory and Method of Numerical Simulation of Composite Scattering from the Object and Randomly Rough Surface[M]. Beijing: Science Press , 2008: 5-15.
|
[4] |
Beckmann P A and Spozzochino T. The Scattering of Electromagnetic Waves from Rough Surface[M]. New York: Macmillan Press, 1968: 20-35.
|
[5] |
Fung A K. Theory of cross-polarized power returned from a random surface[J]. Applied Science Research, 1968, 18(1): 50-60.
|
[6] |
Fung A K, Li Z, and Chen K S. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 356-369.
|
[7] |
Wu T D, Chen K S, Shi J C, et al.. A transition model for the reflection coefficient in surface scattering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 2040-2050.
|
[8] |
Wu T D and Chen K S. A reappraisal of the validity of the IEM model for backscattering from rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 743-753.
|
[9] |
Ulaby F T, Moore P K, and Fung A K. Microwave Remote Sensing, Vol Ⅱ: Microwave Remote Sensing Fundamentals and Radiometry[M]. London: Addison Wesley Publishing Company Press, 1981: 6-18.
|
[10] |
Brown G S. Backscattering from a Gaussian distributed perfectly conducting rough surface[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(3): 472-482.
|
[11] |
Burrows M L. A reformulated boundary perturbation theory in electromagnetism and its application to a sphere[J]. Canadian Journal of Physics, 1967, 45(5): 1729-1743.
|
[12] |
Wright J. A new model for sea clutter[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 217-223.
|
[13] |
Burrows M L. On the composite model for rough surface scattering[J]. IEEE Transactions on Antennas and Propagation, 1973, 21(2): 241-243.
|
[14] |
Mario L. Applied Stochastic Processes[M]. New York: John Wiley and Sons Press, 1996: 55-62.
|
[15] |
Fang Z B. Stochastic Processes[M]. Beijing: Science Press, 2011: 10-25.
|
[16] |
Beckmann P. Scattering by non-Gaussian surfaces[J]. IEEE Transactions on Antennas and Propagation, 1975, 21(2): 169-175.
|
[17] |
Chui C K. An Introduction to Wavelets[M]. New York: Academic Press, 1992: 22-34.
|
[18] |
Hilton M L, Jawerth B D, and Sengupta A. Compressing still and moving images with wavelets[J]. Multimedia System, 1994, 2(3): 218-227.
|
[19] |
Nielsen N H and Wickerhauser M V. Wavelets and time-frequency analysis[J]. Proceedings of the IEEE, 1996, 84(4): 523-540.
|
[20] |
Strang G and Nguyen T Q. Wavelets and Filter Banks[M]. Wellesley: Wellesley-Cambridge Press, 1996: 103-134.
|
[21] |
Fung A K. Exact Scattering from a Known Randomly Rough Surface[M]. Switzerland: URSI Commission Press, 1974: 2-8.
|
[22] |
Valenzuela G R. Theories for the interaction of electromagnetic and oceanic waves - a review[J]. Boundary-Layer Meteorology, 1978, 13(1): 61-85.
|
[23] |
Jin Y Q. Remote Sensing Theory of Electromagnetic Scattering and Thermal Emission[M]. Beijing: Science Press, 1993: 87-102.
|
[1] | CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247 |
[2] | LI Yuxi, ZHU Ruichao, SUI Sai, JIA Yuxiang, DING Chang, HAN Yajuan, QU Shaobo, WANG Jiafu. Dynamic Electromagnetic Control Technology and its Application Based on Metasurface[J]. Journal of Radars. doi: 10.12000/JR24259 |
[3] | ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230 |
[4] | ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216 |
[5] | XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186 |
[6] | ZHOU Hongcheng, YU Xiaoran, WANG Yu, YAN Zhongming. Research Progress of Electrically Controlled Reconfigurable Polarization Manipulation Using Metasurface[J]. Journal of Radars, 2024, 13(3): 696-713. doi: 10.12000/JR23230 |
[7] | ZHOU Jingyi, ZHENG Shilie, YU Xianbin, HUI Xiaonan, ZHANG Xianmin. Reconfigurable Mode Vortex Beam Generation Based on Transmissive Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2022, 11(4): 728-735. doi: 10.12000/JR22021 |
[8] | LAN Lan, LIAO Guisheng, XU Jingwei, ZHU Shengqi, ZENG Cao, ZHANG Yuhong. Waveform Design and Signal Processing Method of a Multifunctional Integrated System Based on a Frequency Diverse Array(in English)[J]. Journal of Radars, 2022, 11(5): 850-870. doi: 10.12000/JR22163 |
[9] | JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167 |
[10] | YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061 |
[11] | LI Shangyang, FU Shilei, XU Feng. DNN-based Intelligent Beamforming on a Programmable Metasurface[J]. Journal of Radars, 2021, 10(2): 259-266. doi: 10.12000/JR21039 |
[12] | SHUANG Ya, LI Li, WANG Zhuo, WEI Menglin, LI Lianlin. Controllable Manipulation of Wi-Fi Signals Using Tunable Metasurface[J]. Journal of Radars, 2021, 10(2): 313-325. doi: 10.12000/JR21012 |
[13] | NIAN Yiheng, ZHOU Ningning, ZHU Shitao, ZHANG Anxue. Differential Coincidence Imaging Based on a Randomly Modulated Metamaterial Surface[J]. Journal of Radars, 2021, 10(2): 296-303. doi: 10.12000/JR20136 |
[14] | SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070 |
[15] | YANG Huanhuan, CAO Xiangyu, GAO Jun, LI Tong, LI Sijia, CONG Lili, ZHAO Xia. Recent Advances in Reconfigurable Metasurfaces and Their Applications[J]. Journal of Radars, 2021, 10(2): 206-219. doi: 10.12000/JR20137 |
[16] | LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031 |
[17] | JIANG Qian, WU Hao, WANG Yanyu. Airborne Multi-functional Maritime Surveillance Radar System Design and Key Techniques[J]. Journal of Radars, 2019, 8(3): 303-317. doi: 10.12000/JR19045 |
[18] | Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100 |
[19] | Hong Yongbin, Zhang Yong, Lu Zhenxing, Huang Wei. An Efficient Contrast-based Motion Compensation Algorithm for Stepped-frequency Radar[J]. Journal of Radars, 2016, 5(4): 378-388. doi: 10.12000/JR16068 |
[20] | Li Da-peng. A New Type of Moment Estimator for the K-distribution Shape Parameter with High Accuracy and Efficiency[J]. Journal of Radars, 2014, 3(4): 439-443. doi: 10.3724/SP.J.1300.2014.14017 |
1. | 赵晓琛,赵东涛,袁航,王欢,张群. 低脉冲重复频率条件下无人机微动参数提取. 系统工程与电子技术. 2024(05): 1503-1513 . ![]() | |
2. | 李亚康,陈刚. 小角中子散射物理模型自动化筛选. 计算机工程. 2024(06): 56-64 . ![]() | |
3. | 李中余,桂亮,海宇,武俊杰,王党卫,王安乐,杨建宇. 基于变分模态分解与优选的超高分辨ISAR成像微多普勒抑制方法. 雷达学报. 2024(04): 852-865 . ![]() | |
4. | CHEN Siyu,WANG Yong,CAO Rui. A high frequency vibration compensation approach for ultrahigh resolution SAR imaging based on sinusoidal frequency modulation Fourier-Bessel transform. Journal of Systems Engineering and Electronics. 2023(04): 894-905 . ![]() | |
5. | 唐波,谭思炜,张静远. 水下声探测系统载体振动干扰分析及抑制方法. 国防科技大学学报. 2022(06): 89-94 . ![]() | |
6. | 万显荣,谢德强,易建新,胡仕波,童云. 基于STFT谱图滑窗相消的微动杂波去除方法. 雷达学报. 2022(05): 794-804 . ![]() | |
7. | 魏嘉琪,张磊,刘宏伟,盛佳恋. 曲线交叠外推的微动多目标宽带分辨算法. 电子与信息学报. 2019(12): 2889-2895 . ![]() | |
8. | 罗迎,龚逸帅,陈怡君,张群. 基于跟踪脉冲的MIMO雷达多目标微动特征提取. 雷达学报. 2018(05): 575-584 . ![]() |