Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080
Citation: Huang Ping-ping, Tan Wei-xian, Su Ying, Wang Chi. Research on Helicopter-borne MIMO Microwave Imaging Technology Based on Arc Antenna Array[J]. Journal of Radars, 2015, 4(1): 11-19. doi: 10.12000/JR15005

Research on Helicopter-borne MIMO Microwave Imaging Technology Based on Arc Antenna Array

DOI: 10.12000/JR15005
  • Received Date: 2015-01-13
  • Rev Recd Date: 2015-03-03
  • Publish Date: 2015-02-28
  • This study proposes a novel Multiple Input Multiple Output (MIMO) microwave imaging mode based on arc antenna array, which is mounted on the belly of platform. In this mode, an arc aperture is quickly synthesized using an MIMO. Consequently, high space and time resolution images of the illuminated scene around the platform are acquired. First, an imaging principle model based on arc antenna array is described, and its signal model is developed. Then, an imaging algorithm based on confocal projection is discussed and the performance of the mode is analyzed. Finally, the feasibility of the imaging mode and the validity of the proposed algorithm are demonstrated with a numerical simulation.

     

  • [1]
    Huang Ping-ping, Li Hua-sheng, Zhang Sheng, et al.. Joint two-dimensional ambiguity resolving based on space-time filtering for MIMO-SAR[J]. International Journal of Antennas and Propagation, 2014, DOI: 10.1155/2014/452141.
    [2]
    Huang Ping-ping, Li Heng-chao, Feng Fan, et al.. The waveform analysis and signal processing for space-borne MIMO-SAR[C]. 9th European Conference on Synthetic Aperture Radar 2012, Nuremberg, Germany, 2012: 579-582.
    [3]
    Mittermayer J, Wendler M, Krieger G, et al.. Sector Imaging Radar for Enhanced Vision (SIREV): simulation and processing techniques[C]. Enhanced and Synthetic Vision 2000, Orlando, FL, USA, 2000: 298-305.
    [4]
    Krieger G, Mittermayer J, Buckreuss S, et al.. Sector imaging radar for enhanced vision[J]. Aerospace Science and Technology, 2003(7): 147-158.
    [5]
    Sutor T, Buckreuss S, Krieger G, et al.. Sector Imaging Radar for Enhanced Vision (SIREV): theory and applications[C]. Enhanced and Synthetic Vision 2000, Orlando, FL, USA, 2000: 292-297.
    [6]
    Younis M and Wiesbeck W. Antenna system for a forward looking SAR using digital beamforming on-receive-only[C]. Intenational Geoscience and Remote Sensing Symposium (IGARSS 2000), Honolulu, HI, USA, 2000: 2343-2345.
    [7]
    Wilden H, Klare J, Frohlich A, et al.. MIRA-CLE and experimental MIMO radar in Ka band[C]. EUSAR 2010, Aachen, Germany, 2010: 382-385.
    [8]
    Klare J, Saalmann O, Wilden H, et al.. First experimental results with the imaging MIMO radar MIRA-CLE X[C]. EUSAR 2010, Aachen, Germany, 2010: 374-377.
    [9]
    杜磊. 阵列天线下视合成孔径雷达三维成像模型、方法与实 验研究[D]. [博士论文], 中国科学院研究生院, 2010. Du Lei. Study on model, algorithm and experiment for downward-looking synthetic aperture radar threedimensional imaging based on linear array antennas[D].[Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2010.
    [10]
    洪文, 李道京, 谭维贤, 等. 直升机毫米波阵列天线SAR 真 三维成像系统及其性能分析[C]. 第十届全国雷达学术年会, 北京, 2008: 1084-1088.
    [11]
    杨晓琳, 谭维贤, 林赟, 等. 基于单特显点调频连续波阵列 SAR 系统幅相误差校正方法研究[J]. 电子与信息学报, 2014, 36(11): 2672-2677. Yang Xiao-lin, Tan Wei-xian, Lin Yun, et al.. Amplitude and phase errors correction method for FMCW array SAR system using single prominent point echo[J]. Journal of Electronics Information Technology, 2014, 36(11): 2672-2677.
    [12]
    杨晓琳. 线阵成像雷达系统设计及幅相误差一致性校正方法 研究[D]. [博士论文], 中国科学院大学, 2014. Yang X L. Research on system design and amplitude/phase errors correction for linear array imaging radar[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2014.
    [13]
    Zhang Y J, Tan W X, Wang Y P, et al.. Analysis and correction of the Doppler frequency shift of forward looking array FMCW SAR[C]. IET Radar Conference 2013, Xi'an, 2013: 1-5.
    [14]
    Shi J, Zhang X L, and Yang J Y. Radix-N resolution- fusion for LASAR via orthogonal complement decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 147-151.
    [15]
    师君. 双基地SAR 与线阵SAR 原理及成像技术研究[D]. [博 士论文], 电子科技大学, 2009. Shi Jun. Research on princiPles and imaging techniques of bistatic SARLASAR[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2009.
    [16]
    曲长文, 侯海平, 杨俭, 等. 基于载机运动特征的FMCW SAR 前视成像仿真分析[J]. 系统仿真学报, 2012, 24(10): 2156-2166. Qu Chang-wen, Hou Hai-ping, Yang Jian, et al.. Simulation analysis of forward-looking FMCW SAR imaging based on aircraft motion characteristic[J]. Journal of System Simulation, 2012, 24(10): 2156-2166.
    [17]
    Huang Ping-ping and Ren Xiao-zhen. Three-dimensional imaging model and principle analysis for tomography SAR and forward-looking SAR[J]. International Journal of Digital Content Technology and its Applications, 2011, 5(8): 188-195.
    [18]
    Klausing H and Keydel W. Feasibility of a synthetic aperture radar with rotating antennas (ROSAR)[C]. Record of the IEEE International Radar Conference 1990, Arlington, VA, USA, 1990: 51-56.
    [19]
    Ishimaru A, Chan T K, and Kuga Y. An imaging technique using confocal circular synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1524-1530.
    [20]
    谭维贤. 合成孔径雷达三维成像理论与方法研究[D]. [博士论 文], 中国科学院研究生院, 2009. Tan W X. Study on theory and algorithms for threedimensional synthetic aperture radar imaging[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2009.
    [21]
    Meta A. Signal processing of FMCW synthetic aperture radar data[D]. [Ph.D. dissertation], Delft University of Technology, 2006.
  • Relative Articles

    [1]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [2]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [3]LIU Tao, YANG Ziyuan, JIANG Yanni, GAO Gui. Review of Ship Detection in Polarimetric Synthetic Aperture Imagery (in English)[J]. Journal of Radars, 2021, 10(1): 1-19. doi: 10.12000/JR20155
    [4]ZHU Qingtao, YIN Junjun, ZENG Liang, YANG Jian. Polarimetric SAR Image Affine Registration Based on Neighborhood Consensus[J]. Journal of Radars, 2021, 10(1): 49-60. doi: 10.12000/JR20120
    [5]PANG Lei, ZHANG Fengli, WANG Guojun, LIU Na, SHAO Yun, ZHANG Jiameng, ZHAO Yuchuan, PANG Lei. Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings[J]. Journal of Radars, 2020, 9(3): 578-587. doi: 10.12000/JR20061
    [6]QIN Xianxiang, YU Wangsheng, WANG Peng, CHEN Tianping, ZOU Huanxin. Weakly Supervised Classification of PolSAR Images Based on Sample Refinement with Complex-Valued Convolutional Neural Network[J]. Journal of Radars, 2020, 9(3): 525-538. doi: 10.12000/JR20062
    [7]HUA Wenqiang, WANG Shuang, GUO Yanhe, XIE Wen. Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree[J]. Journal of Radars, 2019, 8(4): 458-470. doi: 10.12000/JR18104
    [8]ZHANG Lamei, ZHANG Siyu, DONG Hongwei, ZHU Sha. Robust Classification of PolSAR Images Based on Pinball loss Support Vector Machine[J]. Journal of Radars, 2019, 8(4): 448-457. doi: 10.12000/JR19055
    [9]ZHANG Xiangrong, YU Xinyuan, TANG Xu, HOU Biao, JIAO Licheng. PolSAR Image Classification Method Based on Markov Discriminant Spectral Clustering[J]. Journal of Radars, 2019, 8(4): 425-435. doi: 10.12000/JR19059
    [10]HU Tao, LI Weihua, QIN Xianxiang, WANG Peng, YU Wangsheng, LI Jun. Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model[J]. Journal of Radars, 2019, 8(4): 471-478. doi: 10.12000/JR18065
    [11]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [12]She Xiaoqiang, Qiu Xiaolan, Lei Bin, Zhang Wei, Lu Xiaojun. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image[J]. Journal of Radars, 2017, 6(5): 554-563. doi: 10.12000/JR16149
    [13]Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification for Polarimetric Synthetic Aperture Radar Images Based on Wishart Mixture Models[J]. Journal of Radars, 2017, 6(5): 533-540. doi: 10.12000/JR16133
    [14]Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031
    [15]Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083
    [16]Zhang Jie, Zhang Xi, Fan Chenqing, Meng Junmin. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance[J]. Journal of Radars, 2016, 5(6): 596-606. doi: 10.12000/JR16124
    [17]Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074
    [18]Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [19]Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019
    [20]Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.1 %FULLTEXT: 20.1 %META: 71.8 %META: 71.8 %PDF: 8.1 %PDF: 8.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %其他: 0.7 %其他: 0.7 %Canada: 0.1 %Canada: 0.1 %China: 0.5 %China: 0.5 %India: 0.2 %India: 0.2 %Netherlands: 0.0 %Netherlands: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %XX: 0.1 %XX: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.5 %上海: 0.5 %上海市: 0.0 %上海市: 0.0 %东莞: 0.1 %东莞: 0.1 %东营: 0.0 %东营: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %包头: 0.0 %包头: 0.0 %北京: 15.1 %北京: 15.1 %北京市: 0.0 %北京市: 0.0 %北海: 0.1 %北海: 0.1 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %南通: 0.0 %南通: 0.0 %印度: 0.5 %印度: 0.5 %古吉拉特: 0.2 %古吉拉特: 0.2 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸宁: 0.0 %咸宁: 0.0 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宿迁: 0.2 %宿迁: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广元: 0.1 %广元: 0.1 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.1 %开封: 0.1 %张家口: 2.4 %张家口: 2.4 %张家口市: 0.1 %张家口市: 0.1 %徐州: 0.0 %徐州: 0.0 %德黑兰: 0.1 %德黑兰: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.0 %扬州: 0.0 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.3 %昆明: 0.3 %杭州: 1.2 %杭州: 1.2 %梅州: 0.0 %梅州: 0.0 %武汉: 0.4 %武汉: 0.4 %永州: 0.1 %永州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %河池: 0.1 %河池: 0.1 %泰安: 0.1 %泰安: 0.1 %济南: 0.4 %济南: 0.4 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.8 %深圳: 0.8 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.0 %苏州: 0.0 %荷兰北布拉班特省: 0.1 %荷兰北布拉班特省: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 35.8 %西宁: 35.8 %西安: 1.0 %西安: 1.0 %西雅图: 0.0 %西雅图: 0.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %车士活: 0.0 %车士活: 0.0 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.0 %鞍山: 0.0 %韶关: 0.0 %韶关: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他CanadaChinaIndiaNetherlandsTaiwan, ChinaXX[]上海上海市东莞东营丹东伊利诺伊州佛山保定兰辛凤凰城包头北京北京市北海南京南宁南通印度古吉拉特台州合肥呼和浩特咸宁哈尔滨哥伦布大庆大连天津宁波安康宿迁常州常德广元广州库比蒂诺开封张家口张家口市徐州德黑兰成都扬州新乡无锡日照昆明杭州梅州武汉永州沈阳河池泰安济南淮南淮安深圳温州渭南湖州湘潭漯河潍坊烟台玉林盐城石家庄石家庄市纽约芒廷维尤芝加哥苏州荷兰北布拉班特省莫斯科葫芦岛衡阳襄阳西宁西安西雅图贵港贵阳车士活运城连云港郑州重庆铁岭长春长沙长治阳泉青岛鞍山韶关香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2823) PDF downloads(1507) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint