XIA Deping, ZHANG Liang, WU Tao, et al. A multiple interference suppression algorithm based on airborne bistatic polarization radar[J]. Journal of Radars, 2022, 11(3): 399–407. doi: 10.12000/JR21212
Citation: Wei Shun-jun, Shi Jun, Zhang Xiao-ling, Chen Gang. Millimeter-wave Interferometric Synthetic Aperture Radar Data Imaging Based on Terrain Surface Projection[J]. Journal of Radars, 2015, 4(1): 49-59. doi: 10.12000/JR14137

Millimeter-wave Interferometric Synthetic Aperture Radar Data Imaging Based on Terrain Surface Projection

DOI: 10.12000/JR14137
  • Received Date: 2014-11-20
  • Rev Recd Date: 2015-02-05
  • Publish Date: 2015-02-28
  • Millimeter-wave Interferometric Synthetic Aperture Radar (InSAR) has smaller size, lower weight, and higher resolution compared with other bands. Thus, it has become a hot research topic. However, owing to its shorter wavelength, millimeter-wave InSAR data processing requires high-precision measurements of platform motion. For nonideal trajectories, traditional methods face difficulties in echo imaging and interferogram extraction. In addition, existing methods mainly produce SAR images based on plane projection. When the terrain changes abruptly, these methods may cause strong interferometric phase unwrapping and geometric distortion in SAR images. To overcome the abovementioned disadvantages of conventional methods in millimeter-wave InSAR imaging, an approach based on terrain surface projection is proposed. The echoes of different antennas are projected on the same terrain surface space for data imaging and interferogram extraction. In addition, the relation between terrain elevation and interferometric phase is derived. Simulations and experimental results verify the effectiveness of the proposed method; furthermore, the proposed approach improves the precision of interferometric phase extraction in complex motion conditions, while minimizing geometric distortion and phase wrapping in rough terrain, which is more conducive to terrain description and elevation inversion.

     

  • [1]
    李道京. 毫米波干涉合成孔径雷达[J]. 高技术与产业化, 2013(11): 40-43. Li Dao-jing. Millimeter-wave interferometric SAR[J]. High- Technology Industrialization, 2013(11): 40-43.
    [2]
    DAddio S and Ludwig M. Modelling and analysis of rain effect on Ka-band single pass InSAR performance[C]. IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009, 4: 913-916.
    [3]
    Schmitt M and Stilla U. Adaptive multilooking of airborne Ka-band multi-baseline InSAR data of urban areas[C]. IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7401-7404.
    [4]
    Mokadem A, Thirion-Lefevre L, and Colin-Koeniguer E. Analysing urban areas in the frame of non-line of sight target detection. Electromagnetic modelling, validation and application to real data in Ka-band[C]. International Conference on Electromagnetics in Advanced Applications, Torino, Italy, 2013: 543-546.
    [5]
    潘舟浩, 刘波, 李道京, 等. 毫米波三基线InSAR 系统误差校 正和信号分析[J]. 电子与信息学报, 2011, 33(10): 2464-2470. Pan Zhou-hao, Liu Bo, Li Dao-jing, et al.. Millimeter wave three baseline InSAR system error correction and signal analysis[J]. Journal of Electronics Information Technology, 2011, 33(10): 2464-2470.
    [6]
    刘波, 潘舟浩, 李道京, 等. 基于毫米波 InISAR 成像的运动 目标探测与定位[J]. 红外与毫米波学报, 2012, 31(3): 258-264. Liu Bo, Pan Zhou-hao, Li Dao-jing, et al.. Moving target detection and location based on millimeter-wave InISAR imaging[J]. Journal of Infrared and Millimeter Waves, 2012, 31(3): 258-264.
    [7]
    潘舟浩, 李道京, 刘波, 等. 基于 BP 算法和时变基线的机载 InSAR 数据处理方法研究[J]. 电子与信息学报, 2014, 36(7): 1585-1591. Pan Zhou-hao, Li Dao-jing, Liu Bo, et al.. Processing of the airborne InSAR data based on the BP algorithm and the time-varying baseline[J]. Journal of Electronics Information Technology, 2014, 36(7): 1585-1591.
    [8]
    Walker B, Sander G, Thompson M, et al.. A highresolution, four-band SAR testbed with real-time image formation[C]. IEEE International Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 1996, 3: 1881-1885.
    [9]
    Magnard C, Meier E, Ruegg M, et al.. High resolution millimeter wave SAR interferometry[C]. IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 5061-5064.
    [10]
    Magnard C, Meier E, Small D, et al.. Processing of MEMPHIS millimeter wave multi-baseline InSAR data[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 2010: 4302-4305.
    [11]
    Shi Jun, Ma Long, and Zhang Xiao-ling. Streaming BP for non-linear motion compensation SAR imaging based on GPU[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4): 2035-2050.
    [12]
    师君, 马龙, 韦顺军, 等. 基于导航数据的Ka 波段InSAR 成 像处理与分析[J]. 雷达学报, 2014, 3(1): 19-27. Shi Jun, Ma Long, Wei Shun-jun, et al.. Ka-band InSAR imaging and analysis based on IMU data[J]. Journal of Radars, 2014, 3(1): 19-27.
    [13]
    王超, 张红, 刘智. 星载合成孔径雷达干涉测量[M]. 北京: 科 学出版社, 2002: 37-66. Wang Chao, Zhang Hong, and Liu Zhi. Spaceborne Synthetic Aperture Radar Interferometry[M]. Beijing: Science Press, 2002: 37-66.
    [14]
    Zhu Dai-yin, Jiang Rui, Mao Xin-hua, et al.. Multisubaperture PGA for SAR autofocusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 468-488.
  • Cited by

    Periodical cited type(4)

    1. 胡晓宁,汪丙南,向茂生,王钟斌. 基于DEM辅助后向投影模型的InSAR高程反演方法. 雷达学报. 2021(03): 391-401 . 本站查看
    2. 顾约翰,陶佳慧,张瑞港,王辉,周维. 机载毫米波InSAR获取DEM. 上海航天(中英文). 2021(S1): 20-25 .
    3. 李永杰,孙中昶,韦立登,高建,杨红磊. 利用机载双天线毫米波InSAR生成四川高山区DOM及DSM. 测绘通报. 2020(10): 31-37 .
    4. 戴幻尧,刘勇,黄振宇,张杨. 极化雷达导引头对多路径干扰的检测识别新方法. 雷达学报. 2016(02): 156-163 . 本站查看

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2589) PDF downloads(1516) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint