WANG Xiaoqing, QI Rui, YAO Xiaonan, et al. High-precision simulation of dynamic oceans synthetic aperture radar imaging and its typical application[J]. Journal of Radars, in press. doi: 10.12000/JR24255
Citation: WANG Xiaoqing, QI Rui, YAO Xiaonan, et al. High-precision simulation of dynamic oceans synthetic aperture radar imaging and its typical application[J]. Journal of Radars, in press. doi: 10.12000/JR24255

High-precision Simulation of Dynamic Oceans Synthetic Aperture Radar Imaging and its Typical Application

DOI: 10.12000/JR24255 CSTR: 32380.14.JR24255
Funds:  The National Key R&D Program of China (2023YFB3904905)
More Information
  • Corresponding author: YAO Xiaonan, yaoxn@dlmu.edu.cn
  • Received Date: 2024-12-22
  • Rev Recd Date: 2025-03-23
  • Available Online: 2025-04-03
  • Synthetic Aperture Radar (SAR) ocean remote sensing simulation is an important analytical tool for designing SAR systems for ocean applications. It can also provide training samples for detecting and recognizing SAR images of complex ocean phenomena. Therefore, it plays an important role in the design and application of SAR ocean remote sensing systems. The motion, time-varying, and decoherence characteristics of the sea surface caused the simulation difficulty and calculation amount of SAR ocean remote sensing to be much larger than those of fixed land targets. Therefore, improving the simulation efficiency while ensuring the simulation accuracy is key to achieving high-precision and high-efficiency simulation of SAR ocean imaging. This study introduces the main methods, development status, and main problems of dynamic ocean SAR imaging simulation and provides methods for realizing key problems in high-precision simulation of dynamic ocean SAR imaging. The method can complete the simulation of a 4 m resolution at a 400 km2 scene within 10 min while ensuring high fidelity. Under typical working conditions, the spectral peak error of a simulated SAR image is 3%, and the spectral width error is 4%. The typical applications of dynamic ocean surface SAR imaging simulation in wave spectrum inversion, wave texture suppression based on depth cancellation networks, and ship wake detection based on the Wake2Wake network are introduced. On the one hand, these applications verify that the fidelity of the high-precision simulation of dynamic sea SAR imaging presented in this study can satisfy the requirements of intelligent simulation training. On the other hand, the high-precision simulation offers a good prospect for intelligent application of SAR ocean images and can be an important method for providing samples for intelligent application of SAR ocean remote sensing.

     

  • [1]
    HOLTZMAN J C, FROST V S, and ABBOTT J L, et al. Radar image simulation[J]. IEEE Transactions on Geoscience Electronics, 1978, 16(4): 296–303. doi: 10.1109/TGE.1978.294587.
    [2]
    KAUPP V H, WAITE W P, and MACDONALD H C. Incidence angle considerations for spacecraft imaging radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(3): 384–390. doi: 10.1109/TGRS.1982.350459.
    [3]
    WU C, LIU K Y, and JIN M. Modeling and a correlation algorithm for spaceborne SAR signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 1982, AES-18(5): 563–575. doi: 10.1109/TAES.1982.309269.
    [4]
    汪丙南, 张帆, 向茂生. 基于混合域的SAR回波快速算法[J]. 电子与信息学报, 2011, 33(3): 690–695. doi: 10.3724/SP.J.1146.2010.00555.

    WANG Bingnan, ZHANG Fan, and XIANG Maosheng. SAR raw signal fast algorithm in mixed domain[J]. Journal of Electronics & Information Technology, 2011, 33(3): 690–695. doi: 10.3724/SP.J.1146.2010.00555.
    [5]
    FRANCESCHETTI G and SCHIRINZI G. A SAR processor based on two-dimensional FFT codes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(2): 356–366. doi: 10.1109/7.53462.
    [6]
    FRANCESCHETTI G, MIGLIACCIO M, RICCIO D, et al. SARAS: A synthetic aperture radar (SAR) raw signal simulator[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1): 110–123. doi: 10.1109/36.124221.
    [7]
    陈杰, 周荫清, 李春升. 星载SAR自然地面场景仿真方法研究[J]. 电子学报, 2001, 29(9): 1202–1205. doi: 10.3321/j.issn:0372-2112.2001.09.014.

    CHEN Jie, ZHOU Yinqing, and LI Chunsheng. Spaceborne synthetic aperture radar image simulation of natural ground scene[J]. Acta Electronica Sinica, 2001, 29(9): 1202–1205. doi: 10.3321/j.issn:0372-2112.2001.09.014.
    [8]
    张朋, 张超, 郭陈江, 等. 建筑物的SAR回波信号模拟方法[J]. 系统仿真学报, 2006, 18(7): 1742–1744. doi: 10.3969/j.issn.1004-731X.2006.07.003.

    ZHANG Peng, ZHANG Chao, GUO Chenjiang, et al. SAR raw signal simulation for building[J]. Journal of System Simulation, 2006, 18(7): 1742–1744. doi: 10.3969/j.issn.1004-731X.2006.07.003.
    [9]
    KENT S, KARTAL M, KASAPOGLU N G, et al. Synthetic aperture radar raw data simulation for microwave remote sensing applications[C]. 2007 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2007: 389–392. doi: 10.1109/RAST.2007.4284018.
    [10]
    CHRISTOPHE E, MICHEL J, and INGLADA J. Remote sensing processing: From multicore to GPU[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(3): 643–652. doi: 10.1109/JSTARS.2010.2102340.
    [11]
    ZHANG Fan, HU Chen, LI Wei, et al. Accelerating time-domain SAR raw data simulation for large areas using multi-GPUs[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(9): 3956–3966. doi: 10.1109/JSTARS.2014.2330333.
    [12]
    ZHANG Fan, HU Chen, LI Wei, et al. A deep collaborative computing based SAR raw data simulation on multiple CPU/GPU platform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(2): 387–399. doi: 10.1109/JSTARS.2016.2594272.
    [13]
    ZHANG Fan, YAO Xiaojie, TANG Hanyuan, et al. Multiple mode SAR raw data simulation and parallel acceleration for Gaofen-3 mission[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(6): 2115–2126. doi: 10.1109/JSTARS.2017.2787728.
    [14]
    ALPERS W R, ROSS D B, and RUFENACH C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1981, 86(C7): 6481–6498. doi: 10.1029/JC086iC07p06481.
    [15]
    HASSELMANN K and HASSELMANN S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion[J]. Journal of Geophysical Research: Oceans, 1991, 96(C6): 10713–10729. doi: 10.1029/91JC00302.
    [16]
    ENGEN G and JOHNSEN H. SAR-ocean wave inversion using image cross spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 1047–1056. doi: 10.1109/36.406690.
    [17]
    ALPERS W. Monte Carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra[J]. Journal of Geophysical Research: Oceans, 1983, 88(C3): 1745–1759. doi: 10.1029/JC088iC03p01745.
    [18]
    RIZAEV I G, KARAKUŞ O, HOGAN S J, et al. Modeling and SAR imaging of the sea surface: A review of the state-of-the-art with simulations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 120–140. doi: 10.1016/j.isprsjprs.2022.02.017.
    [19]
    HARGER R O. The side-looking radar image of time-variant scenes[J]. Radio Science, 1980, 15(4): 749–756. doi: 10.1029/RS015i004p00749.
    [20]
    HARGER R O and KORMAN C E. Comparisons of simulated and actual synthetic aperture radar gravity wave images[J]. Journal of Geophysical Research: Oceans, 1988, 93(C11): 13867–13882. doi: 10.1029/JC093iC11p13867.
    [21]
    VACHON P W, RANEY R K, and EMERGY W J. A simulation for spaceborne SAR imagery of a distributed, moving scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(1): 67–78. doi: 10.1109/36.20276.
    [22]
    FRANCESCHETTI G, MIGLIACCIO M, and RICCIO D. On ocean SAR raw signal simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 84–100. doi: 10.1109/36.655320.
    [23]
    NUNZIATA F, GAMBARDELLA A, and MIGLIACCIO M. An educational SAR sea surface waves simulator[J]. International Journal of Remote Sensing, 2008, 29(11): 3051–3066. doi: 10.1080/01431160701469008.
    [24]
    YOSHIDA T and RHEEM C K. SAR image simulation in the time domain for moving ocean surfaces[J]. Sensors, 2013, 13(4): 4450–4467. doi: 10.3390/s130404450.
    [25]
    SANTOS F M, SANTOS A L C, VIOLANTE-CARVALHO N, et al. A simulator of synthetic aperture radar (SAR) image spectra: The applications on oceanswell waves[J]. International Journal of Remote Sensing, 2021, 42(8): 2981–3001. doi: 10.1080/01431161.2020.1847352.
    [26]
    王运华, 于越, 张彦敏. 海面风浪SAR成像仿真研究[J]. 海洋湖沼通报, 2019(6): 41–47. doi: 10.13984/j.cnki.cn37-1141.2019.06.005.

    WANG Yunhua, YU Yue, and ZHANG Yanmin. Investigation on synthetic aperture radar imaging simulation of oceanic wind waves[J]. Transactions of Oceanology and Limnology, 2019(6): 41–47. doi: 10.13984/j.cnki.cn37-1141.2019.06.005.
    [27]
    ROMEISER R. M4S 3.2.0 user’s manual[R]. 2008. ftp://ftp.ifm.zmaw.de/outgoing/romeiser/M4S320/.
    [28]
    FRANCESCHETTI G, IODICE A, RICCIO D, et al. SAR raw signal simulation of oil slicks in ocean environments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 1935–1949. doi: 10.1109/TGRS.2002.803798.
    [29]
    MARULL-PARETAS G. Development of a multi-channel SAR simulator for open-oceans: OASIS[D]. [Master dissertation], Delft University of Technology, 2013.
    [30]
    LIU Baochang and HE Yijun. SAR raw data simulation for ocean scenes using inverse Omega-K algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6151–6169. doi: 10.1109/TGRS.2016.2582525.
    [31]
    LI Qian, ZHANG Yanmin, WANG Yunhua, et al. Numerical simulation of SAR image for sea surface[J]. Remote Sensing, 2022, 14(3): 439. doi: 10.3390/rs14030439.
    [32]
    PLANT W J. A stochastic, multiscale model of microwave backscatter from the ocean[J]. Journal of Geophysical Research: Oceans, 2002, 107(C9): 3120. doi: 10.1029/2001JC000909.
    [33]
    FUNG A and LEE K. A semi-empirical sea-spectrum model for scattering coefficient estimation[J]. IEEE Journal of Oceanic Engineering, 1982, 7(4): 166–176. doi: 10.1109/JOE.1982.1145535.
    [34]
    ROMEISER R, SCHMIDT A, and ALPERS W. A three-scale composite surface model for the ocean wave-radar modulation transfer function[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5): 9785–9801. doi: 10.1029/93JC03372.
    [35]
    余颖, 王小青, 朱敏慧, 等. 基于二阶散射的海面三尺度雷达后向散射模型[J]. 电子学报, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022.

    YU Ying, WANG Xiaoqing, ZHU Minhui, et al. Three-Scale radar backscattering model of the ocean surface based on second-order scattering[J]. Acta Electronica Sinica, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022.
    [36]
    KUDRYAVTSEV V, HAUSER D, CAUDAL G, et al. A semiempirical model of the normalized radar cross section of the sea surface, 2. Radar modulation transfer function[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 8055. doi: 10.1029/2001JC001004.
    [37]
    JIN T and OH Y. An improved semi-empirical model for radar backscattering from rough sea surfaces at X-band[J]. Journal of Electromagnetic Engineering and Science, 2018, 18(2): 136–140. doi: 10.26866/jees.2018.18.2.136.
    [38]
    DU Yanlei, YANG Xiaofeng, CHEN Kunshan, et al. A L-band semi-empirical ocean backscattering model[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 4915–4918. doi: 10.1109/IGARSS.2017.8128106.
    [39]
    SHIMADA T, KAWAMURA H, and SHIMADA M. An L-band geophysical model function for SAR wind retrieval using JERS-1 SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 518–531. doi: 10.1109/TGRS.2003.808836.
    [40]
    ISOGUCHI O and SHIMADA M. An L-band ocean geophysical model function derived from PALSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1925–1936. doi: 10.1109/TGRS.2008.2010864.
    [41]
    STOFFELEN A and ANDERSON D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4[J]. Journal of Geophysical Research: Oceans, 1997, 102(C3): 5767–5780. doi: 10.1029/96JC02860.
    [42]
    HERSBACH H, STOFFELEN A, and DE HAAN S. An improved C-band scatterometer ocean geophysical model function: CMOD5[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03011. doi: 10.1029/2006JC003743.
    [43]
    HERSBACH H. Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(4): 721–736. doi: 10.1175/2009JTECHO698.1.
    [44]
    VERSPEEK J, STOFFELEN A, VERHOEF A, et al. Improved ASCAT wind retrieval using NWP ocean calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2488–2494. doi: 10.1109/TGRS.2011.2180730.
    [45]
    STOFFELEN A, VERSPEEK J A, VOGELZANG J, et al. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2123–2134. doi: 10.1109/JSTARS.2017.2681806.
    [46]
    LU Yiru, ZHANG Biao, PERRIE W, et al. A C-band geophysical model function for determining coastal wind speed using synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2417–2428. doi: 10.1109/JSTARS.2018.2836661.
    [47]
    ZHANG Biao, MOUCHE A, LU Yiru, et al. A geophysical model function for wind speed retrieval from C-band HH-polarized synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1521–1525. doi: 10.1109/LGRS.2019.2905578.
    [48]
    LI Xiaoming and LEHNER S. Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEM-X data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2928–2939. doi: 10.1109/TGRS.2013.2267780.
    [49]
    SHAO Weizeng, ZHANG Zheng, LI Xiaoming, et al. Sea surface wind speed retrieval from TerraSAR-X HH polarization data using an improved polarization ratio model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 4991–4997. doi: 10.1109/JSTARS.2016.2590475.
    [50]
    WENTZ F J and SMITH D K. A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations[J]. Journal of Geophysical Research: Oceans, 1999, 104(C5): 11499–11514. doi: 10.1029/98JC02148.
    [51]
    SOISUVARN S, JELENAK Z, CHANG P S, et al. Scatsat-1 high winds geophysical model function and its winds application in operational marine forecasting and warning[C]. 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 5794–5797. doi: 10.1109/IGARSS39084.2020.9324328.
    [52]
    YUROVSKY Y Y, KUDRYAVTSEV V N, GRODSKY S A, et al. Ka-band dual copolarized empirical model for the sea surface radar cross section[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1629–1647. doi: 10.1109/TGRS.2016.2628640.
    [53]
    POLVERARI F, WINETEER A, RODRIGUEZ E, et al. A Ka-band wind geophysical model function using Doppler scatterometer measurements from the air-sea interaction tower experiment[J]. Remote Sensing, 2022, 14(9): 2067. doi: 10.3390/rs14092067.
    [54]
    FEINDT F, SCHRÖTER J, and ALPERS W. Measurement of the ocean wave-radar modulation transfer function at 35 GHz from a sea-based platform in the North Sea[J]. Journal of Geophysical Research: Oceans, 1986, 91(C8): 9701–9708. doi: 10.1029/JC091iC08p09701.
    [55]
    SCHULZ-STELLENFLETH J, LEHNER S, and HOJA D. Global ocean wave measurements using complex synthetic aperture radar data[C]. Ocean Wave Measurement and Analysis, San Francisco, USA, 2001: 173–182. doi: 10.1061/40604(273)18.
    [56]
    ALPERS W and HENNINGS I. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1984, 89(C6): 10529–10546. doi: 10.1029/JC089iC06p10529.
    [57]
    PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 770–780. doi: 10.1109/TGRS.2009.2027701.
    [58]
    DAVIDSON G W, CUMMING I G, and ITO M R. A chirp scaling approach for processing squint mode SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 121–133. doi: 10.1109/7.481254.
    [59]
    GOMMENGINGER C, CHAPRON B, HOGG A, et al. SEASTAR: A mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas[J]. Frontiers in Marine Science, 2019, 6: 457. doi: 10.3389/fmars.2019.00457.
    [60]
    MASTENBROEK C and DE VALK C F. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 2000, 105(C2): 3497–3516. doi: 10.1029/1999JC900282.
    [61]
    何宜军. 合成孔径雷达提取海浪方向谱的参数化方法[J]. 科学通报, 1999, 44(4): 428–433. doi: 10.3321/j.issn:0023-074X.1999.04.022.

    HE Yijun. Parameterization method for extracting wave directional spectrum using synthetic aperture radar[J]. Chinese Science Bulletin, 1999, 44(4): 428–433. doi: 10.3321/j.issn:0023-074X.1999.04.022.
    [62]
    SUN Jian and GUAN Changlong. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images[J]. Chinese Journal of Oceanology and Limnology, 2006, 24(1): 12–20. doi: 10.1007/BF02842769.
    [63]
    BRÜNING C, HASSELMANN K, HASSELMANN S, et al. A first evaluation of ERS-1 synthetic aperture radar wave mode data[J]. The Global Atmosphere and Ocean System, 1994, 2: 61–98.
    [64]
    WANG Anqi, WANG Xiaoqing, CHEN Jian et al. Wave spectrum retrieval method based on full-link ocean surface SAR imaging simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5219120. doi: 10.1109/TGRS.2023.3324812.
    [65]
    高骥超, 王小青, 种劲松. 一种基于序列SAR图像的海浪对消方法[J]. 国外电子测量技术, 2016, 35(9): 57–60. doi: 10.3969/j.issn.1002-8978.2016.09.014.

    GAO Jichao, WANG Xiaoqing, and CHONG Jinsong. Ocean wave clutter cancellation method based on series of SAR images[J]. Foreign Electronic Measurement Technology, 2016, 35(9): 57–60. doi: 10.3969/j.issn.1002-8978.2016.09.014.
    [66]
    CHAO Xiaopeng, WANG Qingsong, WANG Xiaoqing, et al. Ocean-wave suppression for synthetic aperture radar images by depth counteraction method[J]. Remote Sensing of Environment, 2024, 305: 114086. doi: 10.1016/j.rse.2024.114086.
    [67]
    ZHANG Min, ZHAO Yanwei, CHEN Hui, et al. SAR imaging simulation for composite model of ship on dynamic ocean scene[J]. Progress in Electromagnetics Research, 2011, 113: 395–412. doi: 10.2528/PIER10121102.
    [68]
    TUCK E O. Wave resistance of thin ships and catamarans[R]. Applied Mathematics Report T8701, 1987.
    [69]
    TUCK E O, LAZAUSKAS L, and SCULLEN D C. Sea wave pattern evaluation[R]. 1999. HTTPS://SCULLEN.COM.AU/DSC/PUBLICATIONS/TUCK_SCULLEN_LAZAUSKAS_99.PDF.
    [70]
    XU Chengji, QI Rui, WANG Xiaoqing, et al. Instability of energy spectrum disturbance for ship turbulent wakes: SAR imaging simulation and analysis[J]. Ocean Engineering, 2024, 292: 116502. doi: 10.1016/j.oceaneng.2023.116502.
    [71]
    XU Chengji, WANG Qingsong, WANG Xiaoqing, et al. Wake2Wake: Feature-guided self-supervised wave suppression method for SAR ship wake detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5108114. doi: 10.1109/TGRS.2024.3422803.
  • Relative Articles

    [1]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [2]ZHANG Qiang, WANG Zhihao, WANG Xueqian, LI Gang, HUANG Liwei, SONG Huina, SONG Zhaohui. Cooperative Detection of Ships in Optical and SAR Remote Sensing Images Based on Neighborhood Saliency[J]. Journal of Radars, 2024, 13(4): 885-903. doi: 10.12000/JR24037
    [3]XU Xiaowo, ZHANG Xiaoling, ZHANG Tianwen, SHAO Zikang, XU Yanqin, ZENG Tianjiao. SAR Ship Detection in Complex Scenes Based on Adaptive Anchor Assignment and IOU Supervise[J]. Journal of Radars, 2023, 12(5): 1097-1111. doi: 10.12000/JR23059
    [4]CHEN Shiqi, WANG Wei, ZHAN Ronghui, ZHANG Jun, LIU Shengqi. A Lightweight, Arbitrary-oriented SAR Ship Detector via Feature Map-based Knowledge Distillation[J]. Journal of Radars, 2023, 12(1): 140-153. doi: 10.12000/JR21209
    [5]HAN Zhaoyun, CEN Xi, CUI Jiahe, LI Yachao, ZHANG Peng. Self-supervised Learning Method for SAR Interference Suppression Based on Abnormal Texture Perception[J]. Journal of Radars, 2023, 12(1): 154-172. doi: 10.12000/JR22168
    [6]GUO Lixin, WEI Yiwen. Status and Prospects of Electromagnetic Scattering Echoes Simulation from Complex Dynamic Sea Surfaces and Targets[J]. Journal of Radars, 2023, 12(1): 76-109. doi: 10.12000/JR22202
    [7]XU Congan, SU Hang, LI Jianwei, LIU Yu, YAO Libo, GAO Long, YAN Wenjun, WANG Taoyang. RSDD-SAR: Rotated Ship Detection Dataset in SAR Images[J]. Journal of Radars, 2022, 11(4): 581-599. doi: 10.12000/JR22007
    [8]CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147
    [9]AI Jiaqiu, CAO Zhenxiang, MAO Yuxiang, WANG Zhanghuai, WANG Feifan, JIN Jing. An Improved Bilateral CFAR Ship Detection Algorithm for SAR Image in Complex Environment[J]. Journal of Radars, 2021, 10(4): 499-515. doi: 10.12000/JR20127
    [10]LIU Fangjian, LI Yuan. SAR Remote Sensing Image Ship Detection Method NanoDet Based on Visual Saliency[J]. Journal of Radars, 2021, 10(6): 885-894. doi: 10.12000/JR21105
    [11]LENG Xiangguang, JI Kefeng, XIONG Boli, KUANG Gangyao. Statistical Modeling Methods of Single-channel Complex-valued SAR Images for Ship Detection[J]. Journal of Radars, 2020, 9(3): 477-496. doi: 10.12000/JR20070
    [12]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [13]WANG Chao, QIU Xiaolan, LI Fangfang, LEI Bin. An InSAR Image Simulation and Elevation Inversion Method for Buildings[J]. Journal of Radars, 2020, 9(2): 373-385. doi: 10.12000/JR20010
    [14]SUN Xian, WANG Zhirui, SUN Yuanrui, DIAO Wenhui, ZHANG Yue, FU Kun. AIR-SARShip-1.0: High-resolution SAR Ship Detection Dataset (in English)[J]. Journal of Radars, 2019, 8(6): 852-863. doi: 10.12000/JR19097
    [15]CHEN Shichao, LUO Feng, HU Chong, NIE Xueya. Small Target Detection in Sea Clutter Background Based on Tsallis Entropy of Doppler Spectrum[J]. Journal of Radars, 2019, 8(3): 344-354. doi: 10.12000/JR19012
    [16]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [17]HU Chen, ZHANG Fan, LI Guojun, LI Wei, CUI Zhongma. Computation Reduction Oriented Circular Scanning SAR Raw Data Simulation on Multi-GPUs[J]. Journal of Radars, 2016, 5(4): 434-443. doi: 10.12000/JR15078
    [18]Yun Yajiao, Qi Xiangyang, Li Ning. Moving Ship SAR Imaging Based on Parameter Estimation[J]. Journal of Radars, 2016, 5(3): 326-332. doi: 10.12000/JR15104
    [19]Zhao Tao, Dong Chun-zhu, Ren Hong-mei, Yin Hong-cheng. Dynamic RCS Simulation of a Missile Target Group Based on the High-frequency Asymptotic Method[J]. Journal of Radars, 2014, 3(2): 150-157. doi: 10.3724/SP.J.1300.2014.13153
    [20]Zhang Wen-yi, Hu Dong-hui, Ding Chi-biao. Enhancement of SAR Ship Wake Image Based on FABEMD and Goldstein Filter[J]. Journal of Radars, 2012, 1(4): 426-435. doi: 10.3724/SP.J.1300.2012.20059
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.0 %FULLTEXT: 21.0 %META: 67.5 %META: 67.5 %PDF: 11.5 %PDF: 11.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.3 %其他: 8.3 %上海: 4.5 %上海: 4.5 %下葵涌: 1.3 %下葵涌: 1.3 %中卫: 1.3 %中卫: 1.3 %六安: 1.3 %六安: 1.3 %北京: 16.6 %北京: 16.6 %南京: 2.5 %南京: 2.5 %南昌: 0.6 %南昌: 0.6 %南通: 0.6 %南通: 0.6 %合肥: 1.9 %合肥: 1.9 %咸宁: 0.6 %咸宁: 0.6 %哥伦布: 0.6 %哥伦布: 0.6 %大庆: 0.6 %大庆: 0.6 %大连: 2.5 %大连: 2.5 %宁波: 0.6 %宁波: 0.6 %宣城: 1.3 %宣城: 1.3 %常州: 1.3 %常州: 1.3 %常德: 0.6 %常德: 0.6 %广州: 7.0 %广州: 7.0 %弗吉: 0.6 %弗吉: 0.6 %成都: 1.9 %成都: 1.9 %扬州: 0.6 %扬州: 0.6 %昆明: 1.3 %昆明: 1.3 %杭州: 0.6 %杭州: 0.6 %武汉: 0.6 %武汉: 0.6 %洛阳: 0.6 %洛阳: 0.6 %济南: 1.3 %济南: 1.3 %淄博: 1.3 %淄博: 1.3 %深圳: 0.6 %深圳: 0.6 %温州: 0.6 %温州: 0.6 %漯河: 1.3 %漯河: 1.3 %潍坊: 1.3 %潍坊: 1.3 %烟台: 0.6 %烟台: 0.6 %芒廷维尤: 18.5 %芒廷维尤: 18.5 %蚌埠: 1.3 %蚌埠: 1.3 %衡水: 0.6 %衡水: 0.6 %西安: 2.5 %西安: 2.5 %邯郸: 1.3 %邯郸: 1.3 %郑州: 0.6 %郑州: 0.6 %重庆: 1.3 %重庆: 1.3 %长沙: 3.8 %长沙: 3.8 %青岛: 1.9 %青岛: 1.9 %马鞍山: 0.6 %马鞍山: 0.6 %其他上海下葵涌中卫六安北京南京南昌南通合肥咸宁哥伦布大庆大连宁波宣城常州常德广州弗吉成都扬州昆明杭州武汉洛阳济南淄博深圳温州漯河潍坊烟台芒廷维尤蚌埠衡水西安邯郸郑州重庆长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(106) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint