Turn off MathJax
Article Contents
LI Haoqing, YU Dian, PAN Changchun, et al. Multiradar collaborative task scheduling algorithm based on graph neural networks with model knowledge[J]. Journal of Radars, in press. doi: 10.12000/JR24222
Citation: LI Haoqing, YU Dian, PAN Changchun, et al. Multiradar collaborative task scheduling algorithm based on graph neural networks with model knowledge[J]. Journal of Radars, in press. doi: 10.12000/JR24222

Multiradar Collaborative Task Scheduling Algorithm Based on Graph Neural Networks with Model Knowledge

DOI: 10.12000/JR24222
Funds:  Funding from the Shanghai Municipal Science and Technology Commission (24Z511005506)
More Information
  • Modern radar systems face increasingly complex challenges in tasks such as detection, tracking, and identification. The diversity of task types, limited data resources, and strict execution time requirements make radar task scheduling a strongly NP-hard problem. However, existing scheduling algorithms struggle to efficiently handle multiradar collaborative tasks involving complex logical constraints. Therefore, Artificial Intelligence (AI)-based scheduling algorithms have gained significant attention. However, their efficiency is heavily dependent on effectively extracting the key features of the problem. The ability to quickly and comprehensively extract common features of multiradar scheduling problems is essential for improving the efficiency of such AI scheduling algorithms. Therefore, this paper proposes a Model Knowledge Enhanced Graph Neural Network (MKEGNN) scheduling algorithm. This method frames the radar task collaborative scheduling problem as a heterogeneous network graph, leveraging model knowledge to optimize the training process of the Graph Neural Network (GNN) algorithm. A key innovation of this algorithm is its capability to capture critical model knowledge using low-complexity calculations, which helps to further optimize the GNN model. During the feature extraction stage, the algorithm employs a random unitary matrix transformation. This approach utilizes the spectral features of the random Laplacian matrix from the task’s heterogeneous graph as global features, enhancing the GNN’s ability to extract shared problem features while downplaying individual characteristics. In the parameterized decision-making stage, the algorithm leverages the upper and lower bound knowledge derived from guiding and empirical solutions of the problem model. This strategy significantly reduces the decision space, enabling the network to optimize quickly and accelerating the learning process. Extensive simulation experiments confirm the effectiveness of the MKEGNN algorithm. Compared to existing approaches, it demonstrates improved stability and accuracy across all task sets, boosting the scheduling success rate by 3%~10% and the weighted success rate by 5%~15%. For particularly challenging task sets involving complex multiradar collaborations, the success rate improves by over 4%. The results highlight the algorithm’s stability and robustness.

     

  • loading
  • [1]
    古龙, 唐佳, 罗昀, 等. 基于多维资源管理的多功能雷达任务调度算法[J]. 现代雷达, 2023, 45(10): 73–79. doi: 10.16592/j.cnki.1004-7859.2023.10.009.

    GU Long, TANG Jia, LUO Yun, et al. A multifunctional radar task scheduling algorithm based on multidimensional resource management[J]. Modern Radar, 2023, 45(10): 73–79. doi: 10.16592/j.cnki.1004-7859.2023.10.009.
    [2]
    黄洁瑜, 谢军伟, 杨子晴, 等. 雷达资源管理技术发展研究综述[J/OL]. 现代雷达, https://link.cnki.net/urlid/32.1353.tn.20231229.0910.002.

    HUANG Jieyu, XIE Junwei, YANG Ziqing, et al. A review of radar resource management technology development research[J]. Modern Radar, 1–17. https://link.cnki.net/urlid/32.1353.tn.20231229.0910.002.
    [3]
    钱国栋. 岸基多功能相控阵雷达发展需求和发展方向探讨[J]. 雷达与对抗, 2014, 34(2): 11–13. doi: 10.19341/j.cnki.issn.1009-0401.2014.02.004.

    QIAN Guodong. Development demand and direction of shore-based multifunctional phased array radars[J]. Radar & ECM, 2014, 34(2): 11–13. doi: 10.19341/j.cnki.issn.1009-0401.2014.02.004.
    [4]
    赵佳音, 赵四方. 岸基综合电子战系统设计思考[J]. 舰船电子工程, 2021, 41(7): 9–11,39. doi: 10.3969/j.issn.1672-9730.2021.07.002.

    ZHAO Jiayin and ZHAO Sifang. Design of shore based integrated electronic warfare system[J]. Ship Electronic Engineering, 2021, 41(7): 9–11,39. doi: 10.3969/j.issn.1672-9730.2021.07.002.
    [5]
    卢建斌, 胡卫东, 郁文贤. 多功能相控阵雷达实时任务调度研究[J]. 电子学报, 2006, 34(4): 732–736. doi: 10.3321/j.issn:0372-2112.2006.04.032.

    LU Jianbin, HU Weidong, and YU Wenxian. Study on real-time task scheduling of multifunction phased array radars[J]. Acta Electronica Sinica, 2006, 34(4): 732–736. doi: 10.3321/j.issn:0372-2112.2006.04.032.
    [6]
    丁海婷, 周琳, 刁伟峰. 基于背包问题的多相控阵雷达多目标跟踪时间资源管理算法[J]. 兵工学报, 2021, 42(5): 997–1003. doi: 10.3969/j.issn.1000-1093.2021.05.012.

    DING Haiting, ZHOU Lin, and DIAO Weifeng. Knapsack problem-based algorithm for time resource management of multiple phased array radars for multiple targets tracking[J]. Acta Armamentarii, 2021, 42(5): 997–1003. doi: 10.3969/j.issn.1000-1093.2021.05.012.
    [7]
    易伟, 袁野, 刘光宏, 等. 多雷达协同探测技术研究进展: 认知跟踪与资源调度算法[J]. 雷达学报, 2023, 12(3): 471–499. doi: 10.12000/JR23036.

    YI Wei, YUAN Ye, LIU Guanghong, et al. Recent advances in multi-radar collaborative surveillance: Cognitive tracking and resource scheduling algorithms[J]. Journal of Radars, 2023, 12(3): 471–499. doi: 10.12000/JR23036.
    [8]
    刘宏伟, 严俊坤, 张鹏, 等. 一种面向多任务调度的相控阵雷达资源管理方法[J]. 现代雷达, 2023, 45(6): 8–16. doi: 10.16592/j.cnki.1004-7859.2023.06.002.

    LIU Hongwei, YAN Junkun, ZHANG Peng, et al. A multi-task oriented resource management method for phased array radar[J]. Modern Radar, 2023, 45(6): 8–16. doi: 10.16592/j.cnki.1004-7859.2023.06.002.
    [9]
    JEFFAY K, STANAT D F, and MARTEL C U. On non-preemptive scheduling of period and sporadic tasks[C]. Proceedings Twelfth Real-Time Systems Symposium, San Antonio, TX, USA, 1991:129-139, doi: 10.1109/REAL.1991.160366.
    [10]
    韦刚, 刘昌云, 郭相科. 基于多属性决策的相控阵雷达截获任务规划算法[J]. 现代雷达, 2016, 38(10): 42–46. doi: 10.16592/j.cnki.1004-7859.2016.10.011.

    WEI Gang, LIU Changyun, and GUO Xiangke. Algorithms of search mission planning in phased array radar based on multi-attribute decision[J]. Modern Radar, 2016, 38(10): 42–46. doi: 10.16592/j.cnki.1004-7859.2016.10.011.
    [11]
    朱希同, 杨瑞娟, 李晓柏, 等. 一种多功能天波超视距雷达任务规划调度方法[J]. 舰船电子工程, 2022, 42(2): 75–80. doi: 10.3969/j.issn.1672-9730.2022.02.016.

    ZHU Xitong, YANG Ruijuan, LI Xiaobai, et al. A multifunctional sky-wave over-the-horizon radar task planning and scheduling method[J]. Ship Electronic Engineering, 2022, 42(2): 75–80. doi: 10.3969/j.issn.1672-9730.2022.02.016.
    [12]
    程婷, 恒思宇, 李中柱. 基于脉冲交错的分布式雷达组网系统波束驻留调度[J]. 雷达学报, 2023, 12(3): 616–628. doi: 10.12000/JR22211.

    CHENG Ting, HENG Siyu, and LI Zhongzhu. Real-time dwell scheduling algorithm for distributed phased array radar network based on pulse interleaving[J]. Journal of Radars, 2023, 12(3): 616–628. doi: 10.12000/JR22211.
    [13]
    段毅, 谭贤四, 曲智国, 等. 基于分支定界法的相控阵雷达事件调度算法[J]. 电子学报, 2019, 47(6): 1309–1315. doi: 10.3969/j.issn.0372-2112.2019.06.018.

    DUAN Yi, TAN Xiansi, QU Zhiguo, et al. Phased array radar task scheduling algorithm based on branch and bound method[J]. Acta Electronica Sinica, 2019, 47(6): 1309–1315. doi: 10.3969/j.issn.0372-2112.2019.06.018.
    [14]
    袁野, 杨剑, 刘辛雨, 等. 基于任务效用最大化的多雷达协同任务规划算法[J]. 雷达学报, 2023, 12(3): 550–562. doi: 10.12000/JR23013.

    YUAN Ye, YANG Jian, LIU Xinyu, et al. Multiradar collaborative task planning based ontask utility maximization[J]. Journal of Radars, 2023, 12(3): 550–562. doi: 10.12000/JR23013.
    [15]
    时晨光, 董璟, 周建江. 频谱共存下面向多目标跟踪的组网雷达功率时间联合优化算法[J]. 雷达学报, 2023, 12(3): 590–601. doi: 10.12000/JR22146.

    SHI Chenguang, DONG Jing, and ZHOU Jianjiang. Joint transmit power and dwell time allocation for multitarget tracking in radar networks under spectral coexistence[J]. Journal of Radars, 2023, 12(3): 590–601. doi: 10.12000/JR22146.
    [16]
    宋晓程, 李陟, 任海伟, 等. 目标动态威胁度驱动的分布式组网相控阵雷达资源优化分配算法[J]. 雷达学报, 2023, 12(3): 629–641. doi: 10.12000/JR22240.

    SONG Xiaocheng, LI Zhi, REN Haiwei, et al. Target-driven resource allocation algorithm for distributed netted phased array radars[J]. Journal of Radars, 2023, 12(3): 629–641. doi: 10.12000/JR22240.
    [17]
    赵宇, 李建勋, 曹兰英, 等. 基于二次规划的相控阵雷达任务自适应调度算法[J]. 系统工程与电子技术, 2012, 34(4): 698–703. doi: 10.3969/j.issn.1001-506X.2012.04.11.

    ZHAO Yu, LI Jianxun, CAO Lanying, et al. Adaptive scheduling algorithm based on quadratic programming for multifunction phased array radars[J]. Systems Engineering and Electronics, 2012, 34(4): 698–703. doi: 10.3969/j.issn.1001-506X.2012.04.11.
    [18]
    ZHANG Haowei, XIE Junwei, GE Jiaang, et al. Optimization model and online task interleaving scheduling algorithm for MIMO radar[J]. Computers & Industrial Engineering, 2018, 127: 865–874. doi: 10.1016/j.cie.2018.11.024.
    [19]
    ZHANG Haowei, XIE Junwei, HU Qiyong, et al. A hybrid DPSO with Levy flight for scheduling MIMO radar tasks[J]. Applied Soft Computing, 2018, 71: 242–254. doi: 10.1016/j.asoc.2018.06.028.
    [20]
    ZHANG Haowei, XIE Junwei, HU Qiyong, et al. An entropy-based PSO for DAR task scheduling problem[J]. Applied Soft Computing, 2018, 73: 862–873. doi: 10.1016/j.asoc.2018.09.022.
    [21]
    李纪三, 纪彦星, 曹鼎, 等. 基于广义时间窗的旋转相控阵雷达资源调度算法[J]. 电子学报, 2022, 50(5): 1050–1057. doi: 10.12263/DZXB.20210414.

    LI Jisan, JI Yanxing, CAO Ding, et al. Resource scheduling algorithm of rotating phased array radar based on generalized time window[J]. Acta Electronica Sinica, 2022, 50(5): 1050–1057. doi: 10.12263/DZXB.20210414.
    [22]
    WANG Gaige, GAO Da, and PEDRYCZ W. Solving multiobjective fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution algorithm[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8519–8528. doi: 10.1109/TII.2022.3165636.
    [23]
    TIAN Tuanwei, ZHANG Tianxian, and KONG Lingjiang. Timeliness constrained task scheduling for multifunction radar network[J]. IEEE Sensors Journal, 2019, 19(2): 525–534. doi: 10.1109/JSEN.2018.2878795.
    [24]
    PARK Y and BASKIYAR S. Adaptive scheduling on heterogeneous systems using support vector machine[J]. Computing, 2017, 99(4): 405–425. doi: 10.1007/s00607-016-0513-x.
    [25]
    GUPTA J N D, MAJUMDER A, and LAHA D. Flowshop scheduling with artificial neural networks[J]. Journal of the Operational Research Society, 2020, 71(10): 1619–1637. doi: 10.1080/01605682.2019.1621220.
    [26]
    SHAGHAGHI M and ADVE R S. Machine learning based cognitive radar resource management[C]. 2018 IEEE Radar Conference, Oklahoma City, 2018: 1433–1438. doi: 10.1109/RADAR.2018.8378775.
    [27]
    SONG Wen, CHEN Xinyang, LI Qiqiang, et al. Flexible job-shop scheduling via graph neural network and deep reinforcement learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1600–1610. doi: 10.1109/TII.2022.3189725.
    [28]
    ANSOLA P G, HIGUERA A G, OTAMENDI F J, et al. Agent-based distributed control for improving complex resource scheduling: Application to airport ground handling operations[J]. IEEE Systems Journal, 2014, 8(4): 1145–1157. doi: 10.1109/JSYST.2013.2272248.
    [29]
    QU Zhen, DING Zhen, and MOO P. A machine learning task selection method for radar resource management (poster)[C]. 2019 22th International Conference on Information Fusion, Ottawa, Canada, 2019: 1–6. doi: 10.23919/FUSION43075.2019.9011342.
    [30]
    ZHOU Longfei, ZHANG Lin, and HORN B K P. Deep reinforcement learning-based dynamic scheduling in smart manufacturing[J]. Procedia CIRP, 2020, 93: 383–388. doi: 10.1016/j.procir.2020.05.163.
    [31]
    王跃东, 顾以静, 梁彦, 等. 伴随压制干扰与组网雷达功率分配的深度博弈研究[J]. 雷达学报, 2023, 12(3): 642–656. doi: 10.12000/JR23023.

    WANG Yuedong, GU Yijing, LIANG Yan, et al. Deep game of escorting suppressive jamming and networked radar power allocation[J]. Journal of Radars, 2023, 12(3): 642–656. doi: 10.12000/JR23023.
    [32]
    KUO Teiwei, CHAO Yungsheng, KUO Chinfu, et al. Real-time dwell scheduling of component-oriented phased array radars[J]. IEEE Transactions on Computers, 2005, 54(1): 47–60. doi: 10.1109/TC.2005.10.
    [33]
    MIR H S and GUITOUNI A. Variable dwell time task scheduling for multifunction radar[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(2): 463–472. doi: 10.1109/TASE.2013.2285014.
    [34]
    PINEDO M L. Scheduling: Theory, Algorithms, and Systems[M]. New York: Springer Publishing Company, 2008: 179–182.
    [35]
    BURAK C. Non-Hermitian random matrix theory for MIMO channels[D]. [Master dissertation], Norwegian University of Science and Technology, 2012: 18–20.
    [36]
    KRUZICK S and MOURA J M F. Optimal filter design for signal processing on random graphs: Accelerated consensus[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1258–1272. doi: 10.1109/TSP.2017.2784359.
    [37]
    SHI Xin and QIU R. Power system real-time operation situation assessment based on random matrix theory[C]. 2020 IEEE Power & Energy Society General Meeting, Montreal, QC, 2020: 1–5. doi: 10.1109/PESGM41954.2020.9281475.
    [38]
    PETERS T. Data-driven science and engineering: Machine learning, dynamical systems, and control[J]. Contemporary Physics, 2019, 60(4): 320. doi: 10.1080/00107514.2019.1665103.
    [39]
    WANG Zekun, CHEN Hongjia, TENG Zhongming, et al. On perturbations for spectrum and singular value decompositions followed by deflation techniques[J]. Applied Mathematics Letters, 2025, 160: 109332. doi: 10.1016/j.aml.2024.109332.
    [40]
    ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57–81. doi: 10.1016/j.aiopen.2021.01.001.
    [41]
    SHORT M. Improved schedulability analysis of implicit deadline tasks under limited preemption EDF scheduling[C]. ETFA2011, Toulouse, France, 2011: 1–8. doi: 10.1109/ETFA.2011.6059008.
    [42]
    LIU C L and LAYLAND J W. Scheduling algorithms for multiprogramming in a hard-real-time environment[J]. Journal of the ACM (JACM), 1973, 20(1): 46–61. doi: 10.1145/321738.321743.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(34) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint