| Citation: | LI Kemeng, DAI Yongpeng, SONG Yongping, et al. Single-channel ultrawideband radar human pose-incremental estimation technology[J]. Journal of Radars, 2025, 14(1): 16–27. doi: 10.12000/JR24109 | 
	                | [1] | 
					 LI Ming, QIN Hao, HUANG M,    et al. RGB-D image-based pose estimation with Monte Carlo localization[C]. 2017 3rd International Conference on Control, Automation and Robotics, Nagoya, Japan, 2017: 109–114. DOI:  10.1109/ICCAR.2017.7942670. 
						
					 | 
			
| [2] | 
					 KHAN A, GUPTA S, and GUPTA S K. Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques[J]. International Journal of Disaster Risk Reduction, 2020, 47: 101642. doi:  10.1016/j.ijdrr.2020.101642. 
						
					 | 
			
| [3] | 
					 鲁勇, 吕绍和, 王晓东, 等. 基于WiFi信号的人体行为感知技术研究综述[J]. 计算机学报, 2019, 42(2): 231–251. doi:  10.11897/SP.J.1016.2019.00231. 
					LU Yong, LV Shaohe, WANG Xiaodong, et al. A survey on WiFi based human behavior analysis technology[J]. Chinese Journal of Computers, 2019, 42(2): 231–251. doi:  10.11897/SP.J.1016.2019.00231. 
						
					 | 
			
| [4] | 
					 VON MARCARD T, ROSENHAHN B, BLACK M J, et al. Sparse inertial poser: Automatic 3D human pose estimation from sparse IMUs[J]. Computer Graphics Forum, 2017, 36(2): 349–360. doi:  10.1111/cgf.13131. 
						
					 | 
			
| [5] | 
					 DAI Yongpeng, JIN Tian, LI Haoran, et al. Imaging enhancement via CNN in MIMO virtual array-based radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7449–7458. doi:  10.1109/TGRS.2020.3035064. 
						
					 | 
			
| [6] | 
					 金添, 何元, 李新羽, 等. 超宽带雷达人体行为感知研究进展[J]. 电子与信息学报, 2022, 44(4): 1147–1155. doi:  10.11999/JEIT211044. 
					JIN Tian, HE Yuan, LI Xinyu, et al. Advances in human activity sensing using ultra-wide band radar[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1147–1155. doi:  10.11999/JEIT211044. 
						
					 | 
			
| [7] | 
					 ADIB F, HSU C Y, MAO Hongzi, et al. Capturing the human figure through a wall[J]. ACM Transactions on Graphics (TOG), 2015, 34(6): 219. doi:  10.1145/2816795.2818072. 
						
					 | 
			
| [8] | 
					 ZHAO Mingmin, LI Tianhong, ALSHEIKH M A,    et al. Through-wall human pose estimation using radio signals[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7356–7365. DOI:  10.1109/CVPR.2018.00768. 
						
					 | 
			
| [9] | 
					 ZHAO Mingmin, TIAN Yonglong, ZHAO Hang,    et al. RF-based 3D skeletons[C]. The 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 2018: 267–281. DOI:  10.1145/3230543.3230579. 
						
					 | 
			
| [10] | 
					 SENGUPTA A, JIN Feng, ZHANG Renyuan, et al. mm-Pose: Real-time human skeletal posture estimation using mmWave radars and CNNs[J]. IEEE Sensors Journal, 2020, 20(17): 10032–10044. doi:  10.1109/JSEN.2020.2991741. 
						
					 | 
			
| [11] | 
					 YU Cong, ZHANG Dongheng, WU Zhi, et al. RFPose-OT: RF-based 3D human pose estimation via optimal transport theory[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(10): 1445–1457. doi:  10.1631/FITEE.2200550. 
						
					 | 
			
| [12] | 
					 XIE Chunyang, ZHANG Dongheng, WU Zhi, et al. RPM: RF-based pose machines[J]. IEEE Transactions on Multimedia, 2024, 26: 637–649. doi:  10.1109/TMM.2023.3268376. 
						
					 | 
			
| [13] | 
					 XIE Chunyang, ZHANG Dongheng, WU Zhi, et al. RPM 2.0: RF-based pose machines for multi-person 3D pose estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(1): 490–503. doi:  10.1109/TCSVT.2023.3287329. 
						
					 | 
			
| [14] | 
					 SONG Yongkun, JIN Tian, DAI Yongpeng, et al. Through-wall human pose reconstruction via UWB MIMO radar and 3D CNN[J]. Remote Sensing, 2021, 13(2): 241. doi:  10.3390/rs13020241. 
						
					 | 
			
| [15] | 
					 CHEN V C. The Micro-Doppler Effect in Radar[M]. Boston: Artech House, 2011. 
						
					 | 
			
| [16] | 
					 ZHOU Xiaolong, JIN Tian, DAI Yongpeng, et al. MD-Pose: Human pose estimation for single-channel UWB radar[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, 5(4): 449–463. doi:  10.1109/TBIOM.2023.3265206. 
						
					 | 
			
| [17] | 
					 DING Wen, CAO Zhongping, ZHANG Jianxiong, et al. Radar-based 3D human skeleton estimation by kinematic constrained learning[J]. IEEE Sensors Journal, 2021, 21(20): 23174–23184. doi:  10.1109/JSEN.2021.3107361. 
						
					 | 
			
| [18] | 
					 CAO Zhongping, DING Wen, CHEN Rihui, et al. A joint global-local network for human pose estimation with millimeter wave radar[J]. IEEE Internet of Things Journal, 2023, 10(1): 434–446. doi:  10.1109/JIOT.2022.3201005. 
						
					 | 
			
| [19] | 
					 DU Hao, JIN Tian, SONG Yongping, et al. A three-dimensional deep learning framework for human behavior analysis using range-Doppler time points[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 611–615. doi:  10.1109/LGRS.2019.2930636. 
						
					 | 
			
| [20] | 
					 BOULIC R, THALMANN N M, and THALMANN D. A global human walking model with real-time kinematic personification[J]. The Visual Computer, 1990, 6(6): 344–358. doi:  10.1007/BF01901021. 
						
					 | 
			
| [21] | 
					 ZHENG Ce, ZHU Sijie, MENDIETA M,    et al. 3D human pose estimation with spatial and temporal transformers[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 11636–11645. DOI:  10.1109/ICCV48922.2021.01145. 
						
					 | 
			
| [22] | 
					 FANG Yuming, DING Guanqun, LI Jia, et al. Deep3DSaliency: Deep stereoscopic video saliency detection model by 3D convolutional networks[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2305–2318. doi:  10.1109/TIP.2018.2885229. 
						
					 | 
			
| [23] | 
					 QIU Zhaofan, YAO Ting, and MEI Tao. Learning spatio-temporal representation with pseudo-3d residual networks[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5534–5542. DOI:  10.1109/ICCV.2017.590. 
						
					 | 
			
| [24] | 
					 PAVLLO D, FEICHTENHOFER C, GRANGIER D,    et al. 3D human pose estimation in video with temporal convolutions and semi-supervised training[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2020: 7745–7754. DOI:  10.1109/CVPR.2019.00794. 
						
					 | 
			
| [25] | 
					 YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv, 2016. 
						
					 | 
			
| [26] | 
					 WANG Panqu, CHEN Pengfei, YUAN Ye,    et al. Understanding convolution for semantic segmentation[C]. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, USA, 2018: 1451–1460. DOI:  10.1109/WACV.2018.00163. 
						
					 |