Volume 13 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
DING Zegang, SUN Tao, WANG Zhen, et al. MCJ-UNet: A dual/multi-channel-joint phase unwrapping network for interferometric SAR[J]. Journal of Radars, 2024, 13(1): 97–115. doi: 10.12000/JR23185
Citation: DING Zegang, SUN Tao, WANG Zhen, et al. MCJ-UNet: A dual/multi-channel-joint phase unwrapping network for interferometric SAR[J]. Journal of Radars, 2024, 13(1): 97–115. doi: 10.12000/JR23185

MCJ-UNet: A Dual/Multi-channel-joint Phase Unwrapping Network for Interferometric SAR

DOI: 10.12000/JR23185
Funds:  The National Natural Science Foundation of China (62227901), The Key Program of the National Natural Science Foundation of China (61931002)
More Information
  • Corresponding author: WANG Zhen, wangzhenbit@163.com
  • Received Date: 2023-10-04
  • Rev Recd Date: 2024-01-08
  • Available Online: 2024-01-06
  • Publish Date: 2024-01-11
  • Interferometric Synthetic Aperture Radar (InSAR) enables the efficient retrieval of surface elevation and has extensive applications in terrain mapping. Dual/multi-channel InSAR techniques utilize the differences in the elevation ambiguity of different InSAR channels (i.e., baselines and frequencies) to perform Phase Unwrapping (PU). This enables the effective application of InSAR in regions with abrupt terrain changes. In response to the growing demand for efficient and precise PU, this study leverages deep learning and proposes a dual/multi-channel joint PU network, i.e., Multi-Channel-Joint-UNet (MCJ-UNet), which effectively combines multi-channel phase characteristics and their mutual constraint relationships. The proposed network is constructed based on the dual-channel (i.e., dual-frequency and dual-baseline) InSAR observation configuration. It can also be extended to multi-channel InSAR. The core concept of the proposed method can be summarized as follows. First, the method transforms the elevation ambiguity estimation problem in PU into semantic segmentation, and the UNet network is employed to accomplish the segmentation processing. Second, the squeeze-and-excitation module is introduced to dynamically adjust the information weights, enhancing the network’s perception of the required information across different channels. Third, a phase residual optimization loss function is employed in the context of multi-channel joint constraints to achieve network tuning. In addition, to mitigate the effect of edge detail errors in semantic segmentation results on PU performance, a self-correcting approach for PU errors based on multi-channel joint constraints is proposed. The proposed MCJ-UNet is verified by computer simulations based on simulated and real terrains and experiments based on real TerraSAR-X data.

     

  • loading
  • [1]
    BAMLER R and HARTL P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4): R1–R54. doi: 10.1088/0266-5611/14/4/001
    [2]
    BÜRGMANN R, ROSEN P A, and FIELDING E J. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 169–209. doi: 10.1146/annurev.earth.28.1.169
    [3]
    ITOH K. Analysis of the phase unwrapping algorithm[J]. Applied Optics, 1982, 21(14): 2470. doi: 10.1364/AO.21.002470
    [4]
    EINEDER M and KRIEGER G. Interferometric digital elevation model reconstruction-experiences from SRTM and multi channel approaches for future missions[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea (South), 2005: 2664–2667.
    [5]
    JORDAN R L, HUNEYCUTT B L, and WERNER M. The SIR-C/X-SAR synthetic aperture radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 829–839.
    [6]
    林圣, 王震, 丁泽刚, 等. 多频干涉SAR局部条纹频率估计方法[J]. 信号处理, 2017, 33(3): 314–318. doi: 10.16798/j.issn.1003-0530.2017.03.009

    LIN Sheng, WANG Zhen, DING Zegang, et al. Local fringe frequencies estimation method based on multi-frequency InSAR[J]. Journal of Signal Processing, 2017, 33(3): 314–318. doi: 10.16798/j.issn.1003-0530.2017.03.009
    [7]
    GINI F and LOMBARDINI F. Multibaseline cross-track SAR interferometry: A signal processing perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 71–93. doi: 10.1109/MAES.2005.1499278
    [8]
    ZHU Xiaoxiang, WANG Yuanyuan, MONTAZERI S, et al. A review of ten-year advances of multi-baseline SAR interferometry using TerraSAR-X data[J]. Remote Sensing, 2018, 10(9): 1374. doi: 10.3390/rs10091374
    [9]
    DING Zegang, WANG Zhen, WANG Yan, et al. Refined multifrequency interferometric SAR phase unwrapping for extremely steep terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5221320. doi: 10.1109/TGRS.2022.3142996
    [10]
    DING Zegang, WANG Zhen, LIN Sheng, et al. Local fringe frequency estimation based on multifrequency InSAR for phase-noise reduction in highly sloped terrain[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1527–1531. doi: 10.1109/LGRS.2017.2720695
    [11]
    PASCAZIO V and SCHIRINZI G. Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters[J]. IEEE Transactions on Image Processing, 2002, 11(12): 1478–1489. doi: 10.1109/TIP.2002.804274
    [12]
    FERRAIOLI G, SHABOU A, TUPIN F, et al. Multichannel phase unwrapping with graph cuts[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 562–566. doi: 10.1109/LGRS.2009.2021165
    [13]
    XU Wei, CHANG E C, KWOH L K, et al. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline[C]. 1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2007: 730–732.
    [14]
    YU Hanwen, LI Zhenfang, and BAO Zheng. A cluster-analysis-based efficient multibaseline phase-unwrapping algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 478–487. doi: 10.1109/TGRS.2010.2055569
    [15]
    FORNARO G, PAUCIULLO A, and SANSOSTI E. Phase difference-based multichannel phase unwrapping[J]. IEEE Transactions on Image Processing, 2005, 14(7): 960–972. doi: 10.1109/TIP.2005.849302
    [16]
    ZENG Tao, LIU Tiandong, DING Zegang, et al. Phase unwrapping method based on multi-frequency InSAR in highly sloped terrain[J]. Electronics Letters, 2016, 52(12): 1058–1059. doi: 10.1049/el.2015.3795
    [17]
    葛仕奇, 陈亮, 丁泽刚, 等. 利用梯度重建的稳健多频InSAR相位解缠方法[J]. 测绘学报, 2013, 42(3): 367–373, 396.

    GE Shiqi, CHEN Liang, DING Zegang, et al. A robust multi-frequency phase unwrapping[J]. Acta Geodaetica et Cartographiea Siniea, 2013, 42(3): 367–373, 396.
    [18]
    YU Hanwen and LAN Yang. Robust two-dimensional phase unwrapping for multibaseline SAR interferograms: A two-stage programming approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5217–5225. doi: 10.1109/tgrs.2016.2558541
    [19]
    ZHOU Lifan, YU Hanwen, LAN Yang, et al. Deep learning-based branch-cut method for InSAR two-dimensional phase unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5209615. doi: 10.1109/TGRS.2021.3099997
    [20]
    ZHOU Lifan, YU Hanwen, and LAN Yang. Deep convolutional neural network-based robust phase gradient estimation for two-dimensional phase unwrapping using SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4653–4665. doi: 10.1109/TGRS.2020.2965918
    [21]
    WANG Kaiqiang, LI Ying, KEMAO Q, et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 2019, 27(10): 15100–15115. doi: 10.1364/OE.27.015100
    [22]
    ZHOU Lifan, YU Hanwen, LAN Yang, et al. CANet: An unsupervised deep convolutional neural network for efficient cluster-analysis-based multibaseline InSAR phase unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5212315. doi: 10.1109/TGRS.2021.3110518
    [23]
    RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [24]
    HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
    [25]
    黄国满. 机载多波段多极化干涉SAR测图系统—CASMSAR[J]. 测绘科学, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011

    HUANG Guoman. An airborne interferometric SAR mapping system with multi-band and multi-polarization—CASMSAR[J]. Science of Surveying and Mapping, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011
    [26]
    周良将, 汪丙南, 王亚超, 等. 机载多维度SAR航空观测系统实验初步进展[J]. 电子与信息学报, 2023, 45(4): 1243–1253. doi: 10.11999/JEIT220250

    ZHOU Liangjiang, WANG Bingnan, WANG Yachao, et al. Preliminary process of airborne multidimensional space joint-observation SAR system[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1243–1253. doi: 10.11999/JEIT220250
    [27]
    丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [28]
    仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027
    [29]
    WANG Wenjie and XIA Xianggen. A closed-form robust Chinese remainder theorem and its performance analysis[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5655–5666. doi: 10.1109/TSP.2010.2066974
    [30]
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    [31]
    杨真真, 孙雪, 邵静, 等. 基于多尺度偶数卷积注意力U-Net的医学图像分割[J]. 信号处理, 2022, 38(9): 1912–1921. doi: 10.16798/j.issn.1003-0530.2022.09.014

    YANG Zhenzhen, SUN Xue, SHAO Jing, et al. Medical image segmentation based on multiscale even convolution attention U-Net[J]. Journal of Signal Processing, 2022, 38(9): 1912–1921. doi: 10.16798/j.issn.1003-0530.2022.09.014
    [32]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [33]
    梁峰, 谢先明, 徐有邈, 等. 一种改进的U-Net相位解缠方法[J]. 遥感信息, 2021, 36(5): 134–141. doi: 10.3969/j.issn.1000-3177.2021.05.018

    LIANG Feng, XIE Xianming, XU Youmiao, et al. An improved U-Net phase unwrapping method[J]. Remote Sensing Information, 2021, 36(5): 134–141. doi: 10.3969/j.issn.1000-3177.2021.05.018
    [34]
    KINGMA D P and BA J. Adam: A method for stochastic optimization[EB/OL]. https://doi.org/10.48550/arXiv.1412.6980.
    [35]
    LOSHCHILOV I and HUTTER F. SGDR: Stochastic gradient descent with warm restarts[EB/OL]. https://doi.org/10.48550/arXiv.1608.03983.
    [36]
    GOLDSTEIN R M and WERNER C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 4035–4038. doi: 10.1029/1998GL900033
    [37]
    ASF data search vertex[EB/OL]. https://search.asf.alaska.edu/, 2023.
    [38]
    GESCH D B, OIMOEN M J, and EVANS G A. Accuracy assessment of the U.S. Geological Survey national elevation dataset, and comparison with other large-area elevation datasets: SRTM and ASTER[R]. Open-File Report 2014-1008, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(913) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint