Citation: | LIU Che, YANG Kaiqiao, BAO Jianghan, et al. Recent progress in intelligent electromagnetic computing[J]. Journal of Radars, 2023, 12(4): 657–683. doi: 10.12000/JR23133 |
[1] |
“电磁计算”专刊编委会. 电磁计算方法研究进展综述[J]. 电波科学学报, 2020, 35(1): 13–25. doi: 10.13443/j.cjors.2019110301
The Editorial Board of Special Issue for “Computational Electromagnetics”. Progress in computational electromagnetic methods[J]. Chinese Journal of Radio Science, 2020, 35(1): 13–25. doi: 10.13443/j.cjors.2019110301
|
[2] |
SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354–359. doi: 10.1038/nature24270
|
[3] |
JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583–589. doi: 10.1038/s41586-021-03819-2
|
[4] |
BI Kaifeng, XIE Lingxi, ZHANG Hengheng, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7970): 533–538. doi: 10.1038/s41586-023-06185-3
|
[5] |
ZHANG Yuchen, LONG Mingsheng, CHEN Kaiyuan, et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 2023, 619(7970): 526–532. doi: 10.1038/S41586-023-06184-4
|
[6] |
FAWZI A, BALOG M, HUANG A, et al. Discovering faster matrix multiplication algorithms with reinforcement learning[J]. Nature, 2022, 610(7930): 47–53. doi: 10.1038/s41586-022-05172-4
|
[7] |
ZHU Shiqiang, YU Ting, XU Tao, et al. Intelligent computing: The latest advances, challenges, and future[J]. Intelligent Computing, 2023, 2: 0006. doi: 10.34133/icomputing.0006
|
[8] |
HORNIK K, STINCHCOMBE M, and WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359–366. doi: 10.1016/0893-6080(89)90020-8
|
[9] |
MA Qian, LIU Che, XIAO Qiang, et al. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 2022, 1(1): R01. doi: 10.3788/PI.2022.R01
|
[10] |
CHEVALIER M W, LUEBBERS R J, and CABLE V P. FDTD local grid with material traverse[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(3): 411–421. doi: 10.1109/8.558656
|
[11] |
JIN Jianming. The Finite Element Method in Electromagnetics[M]. 3rd ed. Hoboken: John Wiley & Sons, 2014.
|
[12] |
HARRINGTON R F. The method of moments in electromagnetics[J]. Journal of Electromagnetic Waves and Applications, 1987, 1(3): 181–200. doi: 10.1163/156939387X00018
|
[13] |
LING H, CHOU R C, and LEE S W. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(2): 194–205. doi: 10.1109/8.18706
|
[14] |
SCHÜTT K T, GASTEGGER M, TKATCHENKO A, et al. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions[J]. Nature Communications, 2019, 10(1): 5024. doi: 10.1038/s41467-019-12875-2
|
[15] |
NOÉ F, OLSSON S, KÖHLER J, et al. Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning[J]. Science, 2019, 365(6457): eaaw1147. doi: 10.1126/science.aaw1147
|
[16] |
MOMENI A and FLEURY R. Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement[J]. Nature Communications, 2022, 13(1): 2651. doi: 10.1038/s41467-022-30297-5
|
[17] |
GIANNAKIS I, GIANNOPOULOS A, and WARREN C. A machine learning-based fast-forward solver for ground penetrating radar with application to full-waveform inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4417–4426. doi: 10.1109/TGRS.2019.2891206
|
[18] |
YAO Heming and JIANG Lijun. Machine learning based neural network solving methods for the FDTD method[C]. 2018 IEEE International Symposium on Antennas and Propagation, Boston, USA, 2018: 2321–2322.
|
[19] |
QI Shutong, WANG Yinpeng, LI Yongzhong, et al. Two-dimensional electromagnetic solver based on deep learning technique[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2020, 5: 83–88. doi: 10.1109/JMMCT.2020.2995811
|
[20] |
SHAN Tao, TANG Wei, DANG Xunwang, et al. Study on a fast solver for Poisson’s equation based on deep learning technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6725–6733. doi: 10.1109/TAP.2020.2985172
|
[21] |
NOAKOASTEEN O, WANG Shu, PENG Zhen, et al. Physics-informed deep neural networks for transient electromagnetic analysis[J]. IEEE Open Journal of Antennas and Propagation, 2020, 1: 404–412. doi: 10.1109/OJAP.2020.3013830
|
[22] |
MA Zhenchao, XU Kuiwen, SONG Rencheng, et al. Learning-based fast electromagnetic scattering solver through generative adversarial network[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(4): 2194–2208. doi: 10.1109/TAP.2020.3026447
|
[23] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
[24] |
ZHANG Wenwei, KONG Dehua, HE Xiaoyang, et al. A machine learning method for 2-D scattered far-field prediction based on wave coefficients[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(5): 1174–1178. doi: 10.1109/LAWP.2023.3235928
|
[25] |
KONG Dehua, ZHANG Wenwei, HE Xiaoyang, et al. Intelligent prediction for scattering properties based on multihead attention and target inherent feature parameter[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5504–5509. doi: 10.1109/TAP.2023.3262341
|
[26] |
YIN Tiantian, WANG Chaofu, XU Kuiwen, et al. Electric flux density learning method for solving 3-D electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5144–5155. doi: 10.1109/TAP.2022.3145486
|
[27] |
YAO Heming and JIANG Lijun. Machine-learning-based PML for the FDTD method[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 192–196. doi: 10.1109/LAWP.2018.2885570
|
[28] |
YAO Heming and JIANG Lijun. Enhanced PML based on the long short term memory network for the FDTD method[J]. IEEE Access, 2020, 8: 21028–21035. doi: 10.1109/ACCESS.2020.2969569
|
[29] |
HUGHES T W, WILLIAMSON I A D, MINKOV M, et al. Wave physics as an analog recurrent neural network[J]. Science Advances, 2019, 5(12): eaay6946. doi: 10.1126/sciadv.aay6946
|
[30] |
FENG Naixing, CHEN Yingshi, ZHANG Yuxian, et al. An expedient DDF-based implementation of perfectly matched monolayer[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 541–544. doi: 10.1109/LMWC.2021.3062645
|
[31] |
SUN Jiajing, SUN Sheng, CHEN Y P, et al. Machine-learning-based hybrid method for the multilevel fast multipole algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2177–2181. doi: 10.1109/LAWP.2020.3026822
|
[32] |
HAO Wenqu, CHEN Y P, CHEN Peiyao, et al. Solving two-dimensional scattering from multiple dielectric cylinders by artificial neural network accelerated numerical green’s function[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(5): 783–787. doi: 10.1109/LAWP.2021.3063133
|
[33] |
GUO Rui, LIN Zhichao, SHAN Tao, et al. Solving combined field integral equation with deep neural network for 2-D conducting object[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(4): 538–542. doi: 10.1109/LAWP.2021.3056460
|
[34] |
GUO Rui, SHAN Tao, SONG Xiaoqian, et al. Physics embedded deep neural network for solving volume integral equation: 2-D case[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6135–6147. doi: 10.1109/TAP.2021.3070152
|
[35] |
XUE Bowen, GUO Rui, LI Maokun, et al. Deep-learning-equipped iterative solution of electromagnetic scattering from dielectric objects[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5954–5966. doi: 10.1109/TAP.2023.3264701
|
[36] |
RAISSI M, PERDIKARIS P, and KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686–707. doi: 10.1016/j.jcp.2018.10.045
|
[37] |
LIM J and PSALTIS D. MaxwellNet: Physics-driven deep neural network training based on Maxwell's equations[J]. APL Photonics, 2022, 7(1): 011301. doi: 10.1063/5.0071616
|
[38] |
GIGLI C, SABA A, AYOUB A B, et al. Predicting nonlinear optical scattering with physics-driven neural networks[J]. APL Photonics, 2023, 8(2): 026105. doi: 10.1063/5.0119186
|
[39] |
FUJITA K. Electromagnetic field computation of multilayer vacuum chambers with physics-informed neural networks[J]. Frontiers in Physics, 2022, 10: 967645. doi: 10.3389/fphy.2022.967645
|
[40] |
CHEN Mingkun, LUPOIU R, MAO Chenkai, et al. WaveY-Net: Physics-augmented deep-learning for high-speed electromagnetic simulation and optimization[C]. SPIE 12011, High Contrast Metastructures XI, San Francisco, USA, 2022: 120110C.
|
[41] |
LU Lu, JIN Pengzhan, PANG Guofei, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218–229. doi: 10.1038/s42256-021-00302-5
|
[42] |
LU Lu, MENG Xuhui, MAO Zhiping, et al. DeepXDE: A deep learning library for solving differential equations[J]. Siam Review, 2021, 63(1): 208–228. doi: 10.1137/19M1274067
|
[43] |
GUPTA G, XIAO Xiongye, and BOGDAN P. Multiwavelet-based operator learning for differential equations[C]. 35th Conference on Neural Information Processing Systems, 2021, 34: 24048–24062.
|
[44] |
LI Zongyi, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[C]. 9th International Conference on Learning Representations, Austria, 2021.
|
[45] |
AUGENSTEIN Y, REPÄN T, and ROCKSTUHL C. Neural operator-based surrogate solver for free-form electromagnetic inverse design[J]. ACS Photonics, 2023, 10(5): 1547–1557. doi: 10.1021/acsphotonics.3c00156
|
[46] |
PENG Zhong, YANG Bo, XU Yixian, et al. Rapid surrogate modeling of electromagnetic data in frequency domain using neural operator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2007912. doi: 10.1109/TGRS.2022.3222507
|
[47] |
PATHAK J, SUBRAMANIAN S, HARRINGTON P, et al. FourCastNet: A global data-driven high-resolution weather model using adaptive Fourier neural operators[J]. arXiv: 2202.11214, 2022.
|
[48] |
GUIBAS J, MARDANI M, LI Zongyi, et al. Adaptive Fourier neural operators: Efficient token mixers for transformers[C]. 10th International Conference on Learning Representations (ICLR), Virtual, Online, 2022.
|
[49] |
许威威, 周漾, 吴鸿智, 等. 可微绘制技术研究进展[J]. 中国图象图形学报, 2021, 26(6): 1521–1535. doi: 10.11834/jig.200853
XU Weiwei, ZHOU Yang, WU Hongzhi, et al. Differential rendering: A survey[J]. Journal of Image and Graphics, 2021, 26(6): 1521–1535. doi: 10.11834/jig.200853
|
[50] |
GUO Liangshuai, LI Maokun, XU Shenheng, et al. Electromagnetic modeling using an FDTD-equivalent recurrent convolution neural network: Accurate computing on a deep learning framework[J]. IEEE Antennas and Propagation Magazine, 2023, 65(1): 93–102. doi: 10.1109/MAP.2021.3127514
|
[51] |
HU Yanyan, JIN Yuchen, WU Xuqing, et al. A theory-guided deep neural network for time domain electromagnetic simulation and inversion using a differentiable programming platform[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 767–772. doi: 10.1109/TAP.2021.3098585
|
[52] |
FU Shilei and XU Feng. Differentiable SAR renderer and image-based target reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 6679–6693. doi: 10.1109/TIP.2022.3215069
|
[53] |
LOPER M M and BLACK M J. OpenDR: An approximate differentiable renderer[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 154–169.
|
[54] |
CHEN Wenzheng, GAO Jun, LING Huan, et al. Learning to predict 3D objects with an interpolation-based differentiable renderer[C]. 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 862.
|
[55] |
MARKLEIN R, MAYER K, HANNEMANN R, et al. Linear and nonlinear inversion algorithms applied in nondestructive evaluation[J]. Inverse Problems, 2002, 18(6): 1733–1759. doi: 10.1088/0266-5611/18/6/319
|
[56] |
ZOUGHI R and KHARKOVSKY S. Microwave and millimetre wave sensors for crack detection[J]. Fatigue & Fracture of Engineering Materials & Structures, 2008, 31(8): 695–713. doi: 10.1111/j.1460-2695.2008.01255.x
|
[57] |
NEAL A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress[J]. Earth-Science Reviews, 2004, 66(3/4): 261–330. doi: 10.1016/j.earscirev.2004.01.004
|
[58] |
ABUBAKAR A, HABASHY T M, DRUSKIN V L, et al. 2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements[J]. Geophysics, 2008, 73(4): F165–F177. doi: 10.1190/1.2937466
|
[59] |
BOND E J, LI Xu, HAGNESS S C, et al. Microwave imaging via space-time beamforming for early detection of breast cancer[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1690–1705. doi: 10.1109/TAP.2003.815446
|
[60] |
NIKOLOVA N K. Microwave imaging for breast cancer[J]. IEEE Microwave Magazine, 2011, 12(7): 78–94. doi: 10.1109/MMM.2011.942702
|
[61] |
SHEEN D M, MCMAKIN D L, and HALL T E. Three-dimensional millimeter-wave imaging for concealed weapon detection[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(9): 1581–1592. doi: 10.1109/22.942570
|
[62] |
ZHUGE Xiaodong and YAROVOY A G. A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 509–518. doi: 10.1109/TGRS.2010.2053038
|
[63] |
VAN DEN BERG P M and KLEINMAN R E. A contrast source inversion method[J]. Inverse Problems, 1997, 13(6): 1607–1620. doi: 10.1088/0266-5611/13/6/013
|
[64] |
VAN DEN BERG P M, ABUBAKAR A, and FOKKEMA J T. Multiplicative regularization for contrast profile inversion[J]. Radio Science, 2003, 38(2): 8022. doi: 10.1029/2001RS002555
|
[65] |
CHEW W C and WANG Yiming. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method[J]. IEEE Transactions on Medical Imaging, 1990, 9(2): 218–225. doi: 10.1109/42.56334
|
[66] |
LI Lianlin, WANG Longgang, DING Jun, et al. A probabilistic model for the nonlinear electromagnetic inverse scattering: TM case[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5984–5991. doi: 10.1109/TAP.2017.2751654
|
[67] |
PASTORINO M. Stochastic optimization methods applied to microwave imaging: A review[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 538–548. doi: 10.1109/TAP.2007.891568
|
[68] |
SALUCCI M, ARREBOLA M, SHAN Tao, et al. Artificial intelligence: New frontiers in real-time inverse scattering and electromagnetic imaging[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6349–6364. doi: 10.1109/TAP.2022.3177556
|
[69] |
SUN Yu, XIA Zhihao, and KAMILOV U S. Efficient and accurate inversion of multiple scattering with deep learning[J]. Optics Express, 2018, 26(11): 14678–14688. doi: 10.1364/OE.26.014678
|
[70] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[71] |
WEI Zhun and CHEN Xudong. Deep-learning schemes for full-wave nonlinear inverse scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 1849–1860. doi: 10.1109/TGRS.2018.2869221
|
[72] |
XU Kuiwen, WU Liang, YE Xiuzhu, et al. Deep learning-based inversion methods for solving inverse scattering problems with phaseless data[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7457–7470. doi: 10.1109/TAP.2020.2998171
|
[73] |
ZHANG Huanhuan, YAO Heming, JIANG Lijun, et al. Enhanced two-step deep-learning approach for electromagnetic-inverse-scattering problems: Frequency extrapolation and scatterer reconstruction[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1662–1672. doi: 10.1109/TAP.2022.3225532
|
[74] |
ZHOU Yulong, ZHONG Yu, WEI Zhun, et al. An improved deep learning scheme for solving 2-D and 3-D inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2853–2863. doi: 10.1109/TAP.2020.3027898
|
[75] |
ZHONG Yu, LAMBERT M, LESSELIER D, et al. A new integral equation method to solve highly nonlinear inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1788–1799. doi: 10.1109/TAP.2016.2535492
|
[76] |
GUO Liang, SONG Guanfeng, and WU Hongsheng. Complex-valued pix2pix-deep neural network for nonlinear electromagnetic inverse scattering[J]. Electronics, 2021, 10(6): 752. doi: 10.3390/electronics10060752
|
[77] |
ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5967–5976.
|
[78] |
SONG Rencheng, HUANG Youyou, YE Xiuzhu, et al. Learning-based inversion method for solving electromagnetic inverse scattering with mixed boundary conditions[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6218–6228. doi: 10.1109/TAP.2021.3139645
|
[79] |
LI Lianlin, WANG Longgang, TEIXEIRA F L, et al. DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(3): 1819–1825. doi: 10.1109/TAP.2018.2885437
|
[80] |
WEI Zhun and CHEN Xudong. Physics-inspired convolutional neural network for solving full-wave inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 6138–6148. doi: 10.1109/TAP.2019.2922779
|
[81] |
GUO Rui, JIA Zekui, SONG Xiaoqian, et al. Pixel- and model-based microwave inversion with supervised descent method for dielectric targets[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 8114–8126. doi: 10.1109/TAP.2020.2999741
|
[82] |
GUO Rui, LIN Zhichao, SHAN Tao, et al. Physics embedded deep neural network for solving full-wave inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6148–6159. doi: 10.1109/TAP.2021.3102135
|
[83] |
LIU Che, ZHANG Hongrui, LI Lianlin, et al. Towards intelligent electromagnetic inverse scattering using deep learning techniques and information metasurfaces[J]. IEEE Journal of Microwaves, 2023, 3(1): 509–522. doi: 10.1109/JMW.2022.3225999
|
[84] |
ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251.
|
[85] |
ZHANG Hongrui, CHEN Yanjin, CUI Tiejun, et al. Probabilistic deep learning solutions to electromagnetic inverse scattering problems using conditional renormalization group flow[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 4955–4965. doi: 10.1109/TMTT.2022.3205890
|
[86] |
CHEN Yanjin, ZHANG Hongrui, CUI Tiejun, et al. A mesh-free 3-D deep learning electromagnetic inversion method based on point clouds[J]. IEEE Transactions on Microwave Theory and Techniques, 2023.
|
[87] |
VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509–514. doi: 10.1070/PU1968v010n04ABEH003699
|
[88] |
PARAZZOLI C G, GREEGOR R B, LI K, et al. Experimental verification and simulation of negative index of refraction using Snell’s law[J]. Physical Review Letters, 2003, 90(10): 107401. doi: 10.1103/PhysRevLett.90.107401
|
[89] |
DRACHEV V P, CAI W, CHETTIAR U, et al. Experimental verification of an optical negative-index material[J]. Laser Physics Letters, 2006, 3(1): 49–55. doi: 10.1002/lapl.200510062
|
[90] |
LIU Ruopeng, CHENG Qiang, HAND T, et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physical Review Letters, 2008, 100(2): 023903. doi: 10.1103/PhysRevLett.100.023903
|
[91] |
KUNDTZ N and SMITH D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129–132. doi: 10.1038/nmat2610
|
[92] |
CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
|
[93] |
CUI Tiejun, LI Lianlin, LIU Shuo, et al. Information metamaterial systems[J]. iScience, 2020, 23(8): 101403. doi: 10.1016/j.isci.2020.101403
|
[94] |
CUI Tiejun, LIU Shuo, and ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. doi: 10.1039/C7TC00548B
|
[95] |
LI Lianlin and CUI Tiejun. Information metamaterials - from effective media to real-time information processing systems[J]. Nanophotonics, 2019, 8(5): 703–724. doi: 10.1515/nanoph-2019-0006
|
[96] |
CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light: Science & Applications, 2016, 5(11): e16172. doi: 10.1038/lsa.2016.172
|
[97] |
刘彻, 马骞, 李廉林, 等. 人工智能超材料[J]. 光学学报, 2021, 41(8): 0823004. doi: 10.3788/AOS202141.0823004
LIU Che, MA Qian, LI Lianlin, et al. Artificial intelligence metamaterials[J]. Acta Optica Sinica, 2021, 41(8): 0823004. doi: 10.3788/AOS202141.0823004
|
[98] |
SHAN Tao, PAN Xiaotian, LI Maokun, et al. Coding programmable metasurfaces based on deep learning techniques[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 114–125. doi: 10.1109/JETCAS.2020.2972764
|
[99] |
LI Shangyang, LIU Zhuoyang, FU Shilei, et al. Intelligent beamforming via physics-inspired neural networks on programmable metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4589–4599. doi: 10.1109/TAP.2022.3140891
|
[100] |
LIU Che, YU Wenming, MA Qian, et al. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network[J]. Photonics Research, 2021, 9(4): B159–B167. doi: 10.1364/PRJ.416287
|
[101] |
CHEN Xiaoqing, ZHANG Lei, and CUI Tiejun. Intelligent autoencoder for space-time-coding digital metasurfaces[J]. Applied Physics Letters, 2023, 122(16): 161702. doi: 10.1063/5.0132635
|
[102] |
QIAN Chao, ZHENG Bin, SHEN Yichen, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383–390. doi: 10.1038/s41566-020-0604-2
|
[103] |
JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. A knowledge-inherited learning for intelligent metasurface design and assembly[J]. Light: Science & Applications, 2023, 12(1): 82. doi: 10.1038/s41377-023-01131-4
|
[104] |
REN Haoran, LI Xiangping, ZHANG Qiming, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805–809. doi: 10.1126/science.aaf1112
|
[105] |
LIN Xing, RIVENSON Y, YARDIMCI N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361(6406): 1004–1008. doi: 10.1126/science.aat8084
|
[106] |
KHORAM E, CHEN Ang, LIU Dianjing, et al. Nanophotonic media for artificial neural inference[J]. Photonics Research, 2019, 7(8): 823–827. doi: 10.1364/PRJ.7.000823
|
[107] |
LIU Che, MA Qian, LUO Zhangjie, et al. A programmable diffractive deep neural network based on a digital-coding metasurface array[J]. Nature Electronics, 2022, 5(2): 113–122. doi: 10.1038/s41928-022-00719-9
|
[108] |
PENDRY J B, MARTÍN-MORENO L, and GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847–848. doi: 10.1126/science.1098999
|
[109] |
GAO Xinxin, MA Qian, GU Ze, et al. Programmable surface plasmonic neural networks for microwave detection and processing[J]. Nature Electronics, 2023, 6(4): 319–328. doi: 10.1038/s41928-023-00951-x
|
[110] |
李廉林, 崔铁军. 智能电磁感知的若干进展[J]. 雷达学报, 2021, 10(2): 183–190. doi: 10.12000/JR21049
LI Lianlin and CUI Tiejun. Recent progress in intelligent electromagnetic sensing[J]. Journal of Radars, 2021, 10(2): 183–190. doi: 10.12000/JR21049
|
[111] |
ZHAO Hanting, HU Shengguo, ZHANG Hongrui, et al. Intelligent indoor metasurface robotics[J]. National Science Review, 2023, 10(8): nwac266. doi: 10.1093/NSR/NWAC266
|
[112] |
WANG Zhuo, ZHANG Hongrui, ZHAO Hanting, et al. Multi-task and multi-scale intelligent electromagnetic sensing with distributed multi-frequency reprogrammable metasurfaces[J]. Advanced Optical Materials, 2023: 2203153.
|
[113] |
LI Weihan, MA Qian, LIU Che, et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision[J]. Nature Communications, 2023, 14(1): 989. doi: 10.1038/s41467-023-36645-3
|