Citation: | GAO Xunzhang, ZHANG Zhiwei, LIU Mei, et al. Intelligent radar image recognition countermeasures: A review[J]. Journal of Radars, 2023, 12(4): 696–712. doi: 10.12000/JR23098 |
[1] |
ZHU Xiaoxiang, MONTAZERI S, ALI M, et al. Deep learning meets SAR: Concepts, models, pitfalls, and perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4): 143–172. doi: 10.1109/MGRS.2020.3046356
|
[2] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv: 1412. 6572, 2014.
|
[3] |
孙浩, 陈进, 雷琳, 等. 深度卷积神经网络图像识别模型对抗鲁棒性技术综述[J]. 雷达学报, 2021, 10(4): 571–594. doi: 10.12000/JR21048
SUN Hao, CHEN Jin, LEI Lin, et al. Adversarial robustness of deep convolutional neural network-based image recognition models: A review[J]. Journal of Radars, 2021, 10(4): 571–594. doi: 10.12000/JR21048
|
[4] |
XU Yonghao, BAI Tao, YU Weikang, et al. AI security for geoscience and remote sensing: Challenges and future trends[J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(2): 60–85. doi: 10.1109/MGRS.2023.3272825
|
[5] |
CAO Dongsheng, HUANG Jianhua, YAN Jun, et al. Kernel k-nearest neighbor algorithm as a flexible SAR modeling tool[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 114: 19–23. doi: 10.1016/j.chemolab.2012.01.008
|
[6] |
袁莉, 刘宏伟, 保铮. 基于中心矩特征的雷达HRRP自动目标识别[J]. 电子学报, 2004, 32(12): 2078–2081. doi: 10.3321/j.issn:0372-2112.2004.12.036
YUAN Li, LIU Hongwei, and BAO Zheng. Automatic target recognition of radar HRRP based on central moments features[J]. Acta Electronica Sinica, 2004, 32(12): 2078–2081. doi: 10.3321/j.issn:0372-2112.2004.12.036
|
[7] |
SAEPULOH A, KOIKE K, and OMURA M. Applying Bayesian decision classification to Pi-SAR polarimetric data for detailed extraction of the geomorphologic and structural features of an active volcano[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 554–558. doi: 10.1109/LGRS.2011.2174611
|
[8] |
LI Min, ZHOU Gongjian, ZHAO Bin, et al. Sparse representation denoising for radar high resolution range profiling[J]. International Journal of Antennas and Propagation, 2014, 2014: 875895. doi: 10.1155/2014/875895
|
[9] |
CHEN Wenchao, CHEN Bo, PENG Xiaojun, et al. Tensor RNN with Bayesian nonparametric mixture for radar HRRP modeling and target recognition[J]. IEEE Transactions on Signal Processing, 2021, 69: 1995–2009. doi: 10.1109/TSP.2021.3065847
|
[10] |
CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
|
[11] |
ROSS T D, WORRELL S W, VELTEN V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]. SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery, Orlando, USA, 1998: 566–573.
|
[12] |
PEI Jifang, HUANG Yulin, HUO Weibo, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196–2210. doi: 10.1109/TGRS.2017.2776357
|
[13] |
SUN Yuanshuang, WANG Yinghua, LIU Hongwei, et al. SAR target recognition with limited training data based on angular rotation generative network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1928–1932. doi: 10.1109/LGRS.2019.2958379
|
[14] |
HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/TGRS.2019.2947634
|
[15] |
FU Kun, ZHANG Tengfei, ZHANG Yue, et al. Few-shot SAR target classification via metalearning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2000314. doi: 10.1109/TGRS.2021.3058249
|
[16] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
[17] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1050.
|
[18] |
KURAKIN A, GOODFELLOW I J, and BENGIO S. Adversarial Examples in the Physical World[M]. YAMPOLSKIY R V. Artificial Intelligence Safety and Security. New York: Chapman and Hall/CRC, 2018: 99–112.
|
[19] |
MOOSAVI-DEZFOOLI S M, FAWZI A, and FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2574–2582.
|
[20] |
CARLINI N and WAGNER D. Towards evaluating the robustness of neural networks[C]. 2017 IEEE Symposium on Security and Privacy (SP), San Jose, USA, 2017: 39–57.
|
[21] |
PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]. 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbruecken, Germany, 2016: 372–387.
|
[22] |
SU Jiawei, VARGAS D V, and SAKURAI K. One pixel attack for fooling deep neural networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 828–841. doi: 10.1109/TEVC.2019.2890858
|
[23] |
POURSAEED O, KATSMAN I, GAO Bicheng, et al. Generative adversarial perturbations[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4422–4431.
|
[24] |
DU Chuan and ZHANG Lei. Adversarial attack for SAR target recognition based on UNet-generative adversarial network[J]. Remote Sensing, 2021, 13(21): 4358. doi: 10.3390/rs13214358
|
[25] |
XIAO Chaowei, LI Bo, ZHU Junyan, et al. Generating adversarial examples with adversarial networks[C]. 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 3905–3911.
|
[26] |
ILYAS A, ENGSTROM L, ATHALYE A, et al. Black-box adversarial attacks with limited queries and information[C]. 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2142–2151.
|
[27] |
GUO Chuan, GARDNER J R, YOU Yurong, et al. Simple black-box adversarial attacks[C]. 36th International Conference on Machine Learning, Long Beach, USA, 2019: 2484–2493.
|
[28] |
TASHIRO Y, SONG Y, ERMON S. Diversity can be transferred: Output diversification for white-and black-box attacks[C]. The 34th International Conference on Neural Information Processing Systems. 2020: 4536–4548.
|
[29] |
GUO Wei, TONDI B, and BARNI M. A master key backdoor for universal impersonation attack against DNN-based face verification[J]. Pattern Recognition Letters, 2021, 144: 61–67. doi: 10.1016/j.patrec.2021.01.009
|
[30] |
GU Tianyu, LIU Kang, DOLAN-GAVITT B, et al. BadNets: Evaluating backdooring attacks on deep neural networks[J]. IEEE Access, 2019, 7: 47230–47244. doi: 10.1109/ACCESS.2019.2909068
|
[31] |
BREWER E, LIN J, and RUNFOLA D. Susceptibility & defense of satellite image-trained convolutional networks to backdoor attacks[J]. Information Sciences, 2022, 603: 244–261. doi: 10.1016/j.ins.2022.05.004
|
[32] |
ISLAM S, BADSHA S, KHALIL I, et al. A triggerless backdoor attack and defense mechanism for intelligent task offloading in multi-UAV systems[J]. IEEE Internet of Things Journal, 2023, 10(7): 5719–5732. doi: 10.1109/JIOT.2022.3172936
|
[33] |
LI Haifeng, HUANG Haikuo, CHEN Li, et al. Adversarial examples for CNN-based SAR image classification: An experience study[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1333–1347. doi: 10.1109/JSTARS.2020.3038683
|
[34] |
周隽凡, 孙浩, 雷琳, 等. SAR图像稀疏对抗攻击[J]. 信号处理, 2021, 37(9): 1633–1643. doi: 10.16798/j.issn.1003-0530.2021.09.007
ZHOU Junfan, SUN Hao, LEI Lin, et al. Sparse adversarial attack of SAR image[J]. Journal of Signal Processing, 2021, 37(9): 1633–1643. doi: 10.16798/j.issn.1003-0530.2021.09.007
|
[35] |
WANG Lulu, WANG Xiaolei, MA Shixin, et al. Universal adversarial perturbation of SAR images for deep learning based target classification[C]. 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 2021: 1272–1276.
|
[36] |
DU Chuan, HUO Chaoying, ZHANG Lei, et al. Fast C&W: A fast adversarial attack algorithm to fool SAR target recognition with deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010005. doi: 10.1109/LGRS.2021.3058011
|
[37] |
ZHANG Fan, MENG Tianying, XIANG Deliang, et al. Adversarial deception against SAR target recognition network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4507–4520. doi: 10.1109/JSTARS.2022.3179171
|
[38] |
徐延杰, 孙浩, 雷琳, 等. 基于稀疏差分协同进化的多源遥感场景分类攻击[J]. 信号处理, 2021, 37(7): 1164–1170. doi: 10.16798/j.issn.1003-0530.2021.07.005
XU Yanjie, SUN Hao, LEI Lin, et al. Multi-source remote sensing classification attack based on sparse differential coevolution[J]. Journal of Signal Processing, 2021, 37(7): 1164–1170. doi: 10.16798/j.issn.1003-0530.2021.07.005
|
[39] |
RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[40] |
PENG Bowen, PENG Bo, YONG Shaowei, et al. An empirical study of fully black-box and universal adversarial attack for SAR target recognition[J]. Remote Sensing, 2022, 14(16): 4017. doi: 10.3390/rs14164017
|
[41] |
DANG Xunwang, YAN Hua, HU Liping, et al. SAR image adversarial samples generation based on parametric model[C]. 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 2021: 1–3.
|
[42] |
DU M, BI D, DU M, et al. Local aggregative attack on SAR image classification models[J]. Authorea Preprints, 2022.
|
[43] |
MENG Tianying, ZHANG Fan, and MA Fei. A target-region-based SAR ATR adversarial deception method[C]. 2022 7th International Conference on Signal and Image Processing (ICSIP), Suzhou, China, 2022: 142–146.
|
[44] |
PENG Bowen, PENG Bo, ZHOU Jie, et al. Speckle-variant attack: Toward transferable adversarial attack to SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4509805. doi: 10.1109/LGRS.2022.3184311
|
[45] |
GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750
|
[46] |
ZHOU Junfan, FENG Sijia, SUN Hao, et al. Attributed scattering center guided adversarial attack for DCNN SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4001805. doi: 10.1109/LGRS.2023.3235051
|
[47] |
PENG Bowen, PENG Bo, ZHOU Jie, et al. Scattering model guided adversarial examples for SAR target recognition: Attack and defense[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5236217. doi: 10.1109/TGRS.2022.3213305
|
[48] |
QIN Weibo, LONG Bo, and WANG Feng. SCMA: A scattering center model attack on CNN-SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4003305. doi: 10.1109/LGRS.2023.3253189
|
[49] |
LIU Hongwei, JIU Bo, LI Fei, et al. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2604–2614. doi: 10.1109/TAP.2017.2673764
|
[50] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2014.
|
[51] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[52] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
|
[53] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
|
[54] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
|
[55] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520.
|
[56] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
|
[57] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.
|
[58] |
SCHMITT M, HUGHES L H, and ZHU X X. The SEN1–2 dataset for deep learning in Sar-optical data fusion[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 4: 141–146. doi: 10.5194/isprs-annals-IV-1-141-2018
|
[59] |
HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672
|
[60] |
ZHU Xiaoxiang, HU Jingliang, QIU Chunping, et al. So2Sat LCZ42: A benchmark data set for the classification of global local climate zones [Software and Data Sets][J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(3): 76–89. doi: 10.1109/MGRS.2020.2964708
|
[61] |
MALMGREN-HANSEN D, KUSK A, DALL J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and remote sensing Letters, 2017, 14(9): 1484–1488. doi: 10.1109/LGRS.2017.2717486
|
[62] |
MALMGREN-HANSEN D and NOBEL-JØRGENSEN M. Convolutional neural networks for SAR image segmentation[C]. 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Abu Dhabi, United Arab Emirates, 2015: 231–236.
|
[63] |
YUAN Yijun, WAN Jinwei, and CHEN Bo. Robust attack on deep learning based radar HRRP target recognition[C]. 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China, 2019: 704–707.
|
[64] |
万锦伟. 基于深度网络的HRRP目标识别与对抗攻击研究[D]. [博士论文], 西安电子科技大学, 2020.
WAN Jinwei. Research on HRRP target recognition and adversarial attacks based on deep neural networks[D]. [Ph. D. dissertation], Xidian University, 2020.
|
[65] |
HUANG Teng, CHEN Yongfeng, YAO Bingjian, et al. Adversarial attacks on deep-learning-based radar range profile target recognition[J]. Information Sciences, 2020, 531: 159–176. doi: 10.1016/j.ins.2020.03.066
|
[66] |
DU Chuan, CONG Yulai, ZHANG Lei, et al. A practical deceptive jamming method based on vulnerable location awareness adversarial attack for radar HRRP target recognition[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2410–2424. doi: 10.1109/TIFS.2022.3170275
|
[67] |
GAO Fei, HUANG Teng, WANG Jun, et al. A novel multi-input bidirectional LSTM and HMM based approach for target recognition from multi-domain radar range profiles[J]. Electronics, 2019, 8(5): 535. doi: 10.3390/electronics8050535
|
[68] |
YANG Yuzhe, ZHANG Guo, XU Zhi, et al. ME-Net: Towards effective adversarial robustness with matrix estimation[C]. 36th International Conference on Machine Learning, Long Beach, USA, 2019: 7025–7034.
|
[69] |
WANG Yutong, ZHANG Wenwen, SHEN Tianyu, et al. Binary thresholding defense against adversarial attacks[J]. Neurocomputing, 2021, 445: 61–71. doi: 10.1016/j.neucom.2021.03.036
|
[70] |
LeCun Y. The MNIST database of handwritten digits[EB/OL]. http://yann.lecun.com/exdb/mnist/, 1998.
|
[71] |
MUSTAFA A, KHAN S H, HAYAT M, et al. Image super-resolution as a defense against adversarial attacks[J]. IEEE Transactions on Image Processing, 2020, 29: 1711–1724. doi: 10.1109/TIP.2019.2940533
|
[72] |
AGARWAL A, SINGH R, VATSA M, et al. Image transformation-based defense against adversarial perturbation on deep learning models[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(5): 2106–2121. doi: 10.1109/TDSC.2020.3027183
|
[73] |
孙浩, 徐延杰, 陈进, 等. 基于自监督对比学习的深度神经网络对抗鲁棒性提升[J]. 信号处理, 2021, 37(6): 903–911. doi: 10.16798/j.issn.1003-0530.2021.06.001
SUN Hao, XU Yanjie, CHEN Jin, et al. Self-supervised contrastive learning for improving the adversarial robustness of deep neural networks[J]. Journal of Signal Processing, 2021, 37(6): 903–911. doi: 10.16798/j.issn.1003-0530.2021.06.001
|
[74] |
XU Yanjie, SUN Hao, CHEN Jin, et al. Adversarial self-supervised learning for robust SAR target recognition[J]. Remote Sensing, 2021, 13(20): 4158. doi: 10.3390/rs13204158
|
[75] |
SONG Chuanbiao, HE Kun, LIN Jiadong, et al. Robust local features for improving the generalization of adversarial training[C]. 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
|
[76] |
ZHANG Hongyang, YU Yaodong, JIAO Jiantao, et al. Theoretically principled trade-off between robustness and accuracy[C]. 36th International Conference on Machine Learning, Long Beach, USA, 2019: 7472–7482.
|
[77] |
INKAWHICH N, DAVIS E, MAJUMDER U, et al. Advanced techniques for robust SAR ATR: Mitigating noise and phase errors[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 844–849.
|
[78] |
WAGNER S, PANATI C, and BRÜGGENWIRTH S. Fool the COOL-on the robustness of deep learning SAR ATR systems[C]. 2021 IEEE Radar Conference (RadarConf21), Atlanta, USA, 2021: 1–6.
|
[79] |
LI Peng, HU Xiaowei, FENG Cunqian, et al. SAR-AD-BagNet: An interpretable model for SAR image recognition based on adversarial defense[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4000505. doi: 10.1109/LGRS.2022.3230243
|
[80] |
LI Peng, FENG Cunqian, HU Xiaowei, et al. SAR-BagNet: An ante-hoc interpretable recognition model based on deep network for SAR image[J]. Remote Sensing, 2022, 14(9): 2150. doi: 10.3390/rs14092150
|
[81] |
HENDRYCKS D and GIMPEL K. Early methods for detecting adversarial images[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[82] |
FEINMAN R, CURTIN R R, SHINTRE S, et al. Detecting adversarial samples from artifacts[OL]. https://arxiv.org/abs/1703.00410.
|
[83] |
MA Xingjun, LI Bo, WANG Yisen, et al. Characterizing adversarial subspaces using local intrinsic dimensionality[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[84] |
LEE K, LEE K, LEE H, et al. A simple unified framework for detecting out-of-distribution samples and adversarial attacks[C]. 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 7167–7177.
|
[85] |
ZHAO Chenxiao, FLETCHER P T, YU Mixue, et al. The adversarial attack and detection under the fisher information metric[C]. Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 5869–5876.
|
[86] |
COHEN G, SAPIRO G, and GIRYES R. Detecting adversarial samples using influence functions and nearest neighbors[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 14441–14450.
|
[87] |
ZHANG Zhiwei, LIU Shuowei, GAO Xunzhang, et al. An empirical study towards SAR adversarial examples[C]. 2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Xi’an, China, 2022: 127–132.
|
[88] |
ZHANG Zhiwei, LIU Shuowei, GAO Xunzhang, et al. Improving adversarial detection methods for SAR image via joint contrastive cross-entropy training[C]. 4th International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 2022: 1107–1110.
|
[89] |
ZHANG Zhiwei, GAO Xunzhang, LIU Shuowei, et al. Energy-based adversarial example detection for SAR images[J]. Remote Sensing, 2022, 14(20): 5168. doi: 10.3390/rs14205168
|
[90] |
YANG Yi and NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]. 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010: 270–279.
|
[91] |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[92] |
CHEN Jianbo, JORDAN M I, and WAINWRIGHT M J. HopSkipJumpAttack: A query-efficient decision-based attack[C]. 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2020: 1277–1294.
|
[93] |
ANDRIUSHCHENKO M, CROCE F, FLAMMARION N, et al. Square attack: A query-efficient black-box adversarial attack via random search[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 484–501.
|
[94] |
MODAS A, MOOSAVI-DEZFOOLI S M, and FROSSARD P. SparseFool: A few pixels make a big difference[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9079–9088.
|
[95] |
YUAN Xuejing, CHEN Yuxuan, ZHAO Yue, et al. Commandersong: A systematic approach for practical adversarial voice recognition[C]. 27th USENIX Conference on Security Symposium, Baltimore, USA, 2018: 49–64.
|
[96] |
DAS N, SHANBHOGUE M, CHEN S T, et al. ADAGIO: Interactive experimentation with adversarial attack and defense for audio[C]. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Dublin, Ireland, 2019: 677–681.
|
[97] |
DOAN K, LAO Y, and LI P. Backdoor attack with imperceptible input and latent modification[J]. Advances in Neural Information Processing Systems, 2021, 34: 18944–18957.
|
[98] |
BAGDASARYAN E and SHMATIKOV V. Blind backdoors in deep learning models[C]. 30th USENIX Security Symposium, 2021: 1505–1521.
|
[99] |
DOAN K, LAO Yingjie, ZHAO Weijie, et al. LIRA: Learnable, imperceptible and robust backdoor attacks[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 11946–11956.
|
[100] |
SAHA A, SUBRAMANYA A, and PIRSIAVASH H. Hidden trigger backdoor attacks[C]. 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11957–11965.
|
[101] |
SHUMAILOV I, SHUMAYLOV Z, KAZHDAN D, et al. Manipulating SGD with data ordering attacks[C]. 34th International Conference on Neural Information Processing Systems, 2021: 18021–18032.
|
[102] |
SOURI H, FOWL L, CHELLAPPA R, et al. Sleeper agent: Scalable hidden trigger backdoors for neural networks trained from scratch[J]. Advances in Neural Information Processing Systems, 2022, 35: 19165–19178.
|
[103] |
DOAN B G, ABBASNEJAD E, and RANASINGHE D C. Februus: Input purification defense against Trojan attacks on deep neural network systems[C]. Annual Computer Security Applications Conference, Austin, USA, 2020: 897–912.
|
[104] |
WANG Bolun, YAO Yuanshun, SHAN S, et al. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks[C]. 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2019: 707–723.
|
[105] |
GIRSHICK R. Fast r-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
|
[106] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
[107] |
CHOW K H, LIU Ling, LOPER M, et al. Adversarial objectness gradient attacks in real-time object detection systems[C]. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, USA, 2020: 263–272.
|
[108] |
WANG Yajie, LV Haoran, KUANG Xiaohui, et al. Towards a physical-world adversarial patch for blinding object detection models[J]. Information Sciences, 2021, 556: 459–471. doi: 10.1016/j.ins.2020.08.087
|
[109] |
张磊, 陈晓晴, 郑熠宁, 等. 电磁超表面与信息超表面[J]. 电波科学学报, 2021, 36(6): 817–828. doi: 10.12265/j.cjors.2021218
ZHANG Lei, CHEN Xiaoqing, ZHENG Yining, et al. Electromagnetic metasurfaces and information metasurfaces[J]. Chinese Journal of Radio Science, 2021, 36(6): 817–828. doi: 10.12265/j.cjors.2021218
|