Volume 11 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
CHEN Jie, YANG Wei, WANG Yamin, et al. Moving target monitoring algorithm based on high-frame-rate SAR images[J]. Journal of Radars, 2022, 11(6): 1048–1060. doi: 10.12000/JR22184
Citation: CHEN Jie, YANG Wei, WANG Yamin, et al. Moving target monitoring algorithm based on high-frame-rate SAR images[J]. Journal of Radars, 2022, 11(6): 1048–1060. doi: 10.12000/JR22184

Moving Target Monitoring Algorithm Based on High-frame-rate SAR Images

doi: 10.12000/JR22184
Funds:  The National Natural Science Foundation of China (62271028)
More Information
  • Corresponding author: YANG Wei, 09707@buaa.edu.cn
  • Received Date: 2022-09-08
  • Rev Recd Date: 2022-11-17
  • Available Online: 2022-11-22
  • Publish Date: 2022-11-28
  • To alleviate the difficulty in monitoring a moving target under a low signal-to-clutter-noise ratio, this paper proposes a moving target monitoring method with high frame-rate spaceborne Synthetic Aperture Radar (SAR) images. First, based on the detection mechanism, current spaceborne SAR moving target detection methods are divided into three categories, and a comparative analysis is performed. Second, the acquisition method of a high-frame-rate SAR image sequence is analyzed based on the staring observation mode. Then, the moving target detection is equated to one-dimensional transient weakly perturbed signal detection with unknown scale and arrival time. Next, the sinc-function form of moving target perturbation between high-frame-frequency SAR images, slowly changing background clutter, and irregular fast-changing state of system noise are analyzed theoretically. To separate the target, clutter, and noise, the deep correlation of the moving target in high-dimensional space is realized based on the kernel function mechanism. Finally, the effectiveness of the proposed method is verified by simulation experiments and real SAR data, and under a low signal-to-clutter-noise ratio, the detection performance of the proposed method is better than the traditional method of constant false alarm rate.

     

  • loading
  • [1]
    FREEMAN A and CURRIE A. Synthetic aperture radar (SAR) images of moving targets[J]. GEC Journal of Research, 1987, 5(2): 106–115.
    [2]
    BARBAROSSA S and FARINA A. A novel procedure for detecting and focusing moving objects with SAR based on the Wigner-Ville distribution[C]. IEEE International Conference on Radar, Arlington, USA, 1990: 44–50.
    [3]
    MOREIRA J R and KEYDEL W. A new MTI-SAR approach using the reflectivity displacement method[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5): 1238–1244. doi: 10.1109/36.469488
    [4]
    FIENUP J R. Detecting moving targets in SAR imagery by focusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 794–809. doi: 10.1109/7.953237
    [5]
    WEIHING D, HINZ S, MEYER F, et al. Detection of along-track ground moving targets in high resolution spaceborn SAR images[J]. International Archives of Photogrammetry, Remote Sensing an Spetial Information Sciences, 2006, 36(7): 7.
    [6]
    ARII M. Efficient motion compensation of SAR imagery by refocusing approach[C]. Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 2013: 150–151.
    [7]
    ARII M. Efficient motion compensation of a moving object on SAR imagery based on velocity correlation function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 936–946. doi: 10.1109/TGRS.2013.2245901
    [8]
    郑明洁, 杨汝良. 一种改进的DPCA运动目标检测方法[J]. 电子学报, 2004, 32(9): 1429–1432. doi: 10.3321/j.issn:0372-2112.2004.09.005

    ZHENG Mingjie and YANG Ruliang. An improved DPCA moving targets detecting algorithm[J]. Acta Electronica Sinica, 2004, 32(9): 1429–1432. doi: 10.3321/j.issn:0372-2112.2004.09.005
    [9]
    CHEN Yi, QIAN Bo, and WANG Shengli. DPCA motion compensation technique based on multiple phase centers[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 711–714.
    [10]
    BUDILLON A, EVANGELISTA A, and SCHIRINZI G. GLRT detection of moving targets via multibaseline along-track interferometric SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 348–352. doi: 10.1109/LGRS.2011.2168381
    [11]
    LEE J S, HOPPEL K W, MANGO S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017–1028. doi: 10.1109/36.312890
    [12]
    BRENNAN L E and REED L S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2): 237–252. doi: 10.1109/TAES.1973.309792
    [13]
    HONIG M L and GOLDSTEIN J S. Adaptive reduced-rank interference suppression based on the multistage wiener filter[J]. IEEE Transactions on Communications, 2002, 50(6): 986–994. doi: 10.1109/TCOMM.2002.1010618
    [14]
    CRISTALLINI D and BURGER W. A robust direct data domain approach for STAP[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1283–1294. doi: 10.1109/TSP.2011.2176335
    [15]
    CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi: 10.1109/TGRS.2012.2201260
    [16]
    GIERULL C H, SIKANETA I, and CERUTTI-MAORI D. Two-step detector for RADARSAT-2’s experimental GMTI mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 436–454. doi: 10.1109/TGRS.2012.2201729
    [17]
    CERUTTI-MAORI D, SIKANETA I, and GIERULL C H. Optimum SAR/GMTI processing and its application to the radar satellite RADARSAT-2 for traffic monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3868–3881. doi: 10.1109/TGRS.2012.2186637
    [18]
    KIRSCHT M. Detection and velocity estimation of moving objects in a sequence of single-look SAR images[C]. 1996 International Geoscience and Remote Sensing Symposium, Lincoln, USA, 1996: 333–335.
    [19]
    MITTERMAYER J, WOLLSTADT S, PRATS-IRAOLA P, et al. Bidirectional SAR imaging mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 601–614. doi: 10.1109/TGRS.2012.2202669
    [20]
    YANG Wei, CHEN Jie, LIU Wei, et al. Moving target azimuth velocity estimation for the MASA mode based on sequential SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2780–2790. doi: 10.1109/JSTARS.2016.2641744
    [21]
    申文杰, 韩冰, 林赟, 等. 多角度SAR动目标检测技术及其高分三号实验验证研究[J]. 雷达学报, 2020, 9(2): 304–320. doi: 10.12000/JR20021

    SHEN Wenjie, HAN Bing, LIN Yun, et al. Multi-aspect SAR-GMTI and experimental research on gaofen-3 SAR modes[J]. Journal of Radars, 2020, 9(2): 304–320. doi: 10.12000/JR20021
    [22]
    陈杰, 杨威, 王鹏波, 等. 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9(2): 205–220. doi: 10.12000/JR20015

    CHEN Jie, YANG Wei, WANG Pengbo, et al. Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9(2): 205–220. doi: 10.12000/JR20015
    [23]
    李春升, 杨威, 王鹏波. 星载SAR成像处理算法综述[J]. 雷达学报, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071

    LI Chunsheng, YANG Wei, and WANG Pengbo. A review of spaceborne SAR algorithm for image formation[J]. Journal of Radars, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071
    [24]
    MILLER J, BISHOP E, and DOERRY A. An application of backprojection for video SAR image formation exploiting a subaperature circular shift register[C]. Algorithms for Synthetic Aperture Radar Imagery XX, Baltimore, USA, 2013: 874609.
    [25]
    YANG Wei, CHEN Jie, LIU Wei, et al. A modified three-step algorithm for TOPS and sliding spotlight SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 6910–6921. doi: 10.1109/TGRS.2017.2735993
    [26]
    WANG Yamin, CHEN Jie, LIU Wei, et al. A moving target velocity estimation method based on the MC-MASA SAR mode[J]. Remote Sensing, 2021, 13(9): 1632. doi: 10.3390/rs13091632
    [27]
    王亚敏, 陈杰, 杨威, 等. 基于Hybrid-TOPS的星载SAR运动目标监视新模式[J]. 北京航空航天大学学报, 2016, 42(6): 1256–1262. doi: 10.13700/j.bh.1001-5965.2015.0420

    WANG Yamin, CHEN Jie, YANG Wei, et al. New moving target monitoring mode with Hybrid-TOPS of spaceborne SAR[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(6): 1256–1262. doi: 10.13700/j.bh.1001-5965.2015.0420
    [28]
    赵嘉斐, 吴敬沄. 时空相关海杂波序列的仿真设计[J]. 电子设计工程, 2018, 26(15): 54–58. doi: 10.3969/j.issn.1674-6236.2018.15.013

    ZHAO Jiafei and WU Jingyun. Simulation of correlated radar sea clutter[J]. Electronic Design Engineering, 2018, 26(15): 54–58. doi: 10.3969/j.issn.1674-6236.2018.15.013
    [29]
    汪廷华, 陈峻婷. 核函数的选择研究综述[J]. 计算机工程与设计, 2012, 33(3): 1181–1186. doi: 10.3969/j.issn.1000-7024.2012.03.068

    WANG Tinghua and CHEN Junting. Survey of research on kernel selection[J]. Computer Engineering and Design, 2012, 33(3): 1181–1186. doi: 10.3969/j.issn.1000-7024.2012.03.068
    [30]
    SHAWE-TAYLOR J and CRISTIANINI N. Kernel Methods for Pattern Analysis[M]. Cambridge: Cambridge University Press, 2004: 60–70.
    [31]
    肖建, 于龙, 白裔峰. 支持向量回归中核函数和超参数选择方法综述[J]. 西南交通大学学报, 2008, 43(3): 297–303. doi: 10.3969/j.issn.0258-2724.2008.03.001

    XIAO Jian, YU Long, and BAI Yifeng. Survey of the selection of kernels and hyper-parameters in support vector regression[J]. Journal of Southwest Jiaotong University, 2008, 43(3): 297–303. doi: 10.3969/j.issn.0258-2724.2008.03.001
    [32]
    CAMPBELL C. An Introduction to Kernel Methods[M]. HOWLETT R J, JAIN L C, and KACPRZYK J. Radial Basis Function Networks 1: Recent Developments in Theory and Applications. Wien: Physica Verlag Rudolf Liebing KG, 2001: 155–192.
    [33]
    LANCKRIET G R G, DE BIE T, CRISTIANINI N, et al. A statistical framework for genomic data fusion[J]. Bioinformatics, 2004, 20(16): 2626–2635. doi: 10.1093/bioinformatics/bth294
    [34]
    RAKOTOMAMONJY A, BACH F R, CANU S, et al. SimpleMKL[J]. Journal of Machine Learning Research, 2008, 9: 2491–2521.
    [35]
    GEBERT N, KRIEGER G, and MOREIRA A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. doi: 10.1109/TAES.2009.5089542
    [36]
    ROHLING H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4): 608–621. doi: 10.1109/TAES.1983.309350
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(827) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint