Volume 11 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
AN Mengyun, YIN Jiapeng, HUANG Jiankai, et al. Adaptive spectral polarization filter design for dual-polarization weather radar[J]. Journal of Radars, 2022, 11(3): 408–417. doi: 10.12000/JR21199
Citation: AN Mengyun, YIN Jiapeng, HUANG Jiankai, et al. Adaptive spectral polarization filter design for dual-polarization weather radar[J]. Journal of Radars, 2022, 11(3): 408–417. doi: 10.12000/JR21199

Adaptive Spectral Polarization Filter Design for Dual-polarization Weather Radar

doi: 10.12000/JR21199
Funds:  The National Natural Science Foundation of China (61971429, 62171447), Postdoctoral International Exchange Program (48132), Science and Technology Innovation Program of Hunan Province (2020RC2042), The Scientific Research Program of the National University of Defense Technology (ZK21-25)
More Information
  • Corresponding author: YIN Jiapeng, yinjiapeng@nudt.edu.cn
  • Received Date: 2021-12-06
  • Accepted Date: 2022-01-25
  • Rev Recd Date: 2022-01-21
  • Available Online: 2022-01-29
  • Publish Date: 2022-03-08
  • This paper proposes an adaptive filtering method called the Adaptive Moving spectral Depolarization Ratio (AMsDR) filter to mitigate the clutter for dual-polarization weather radar based on Jensen-Shannon divergence principle. Specifically, the spectral depolarization ratio in the range-Doppler domain is the main variable distinguishing precipitation from clutter. The AMsDR filter can remove the clutter and noise and retain precipitation based on the difference of the spectral polarization feature and the spectral continuity of precipitation and clutter. The AMsDR filter can adaptively select the filter threshold depending on the echo difference between precipitation and clutter in different azimuths. Thus, the performance of the proposed filter is better than that of the current methods.

     

  • loading
  • [1]
    DOVIAK R J and ZRNIC D S. Doppler Radar and Weather Observations[M]. 2nd ed. Mineola: Dover Publications, 2006.
    [2]
    BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2001.
    [3]
    MATROSOV S Y, CLARK K A, MARTNER B E, et al. X-Band polarimetric radar measurements of rainfall[J]. Journal of Applied Meteorology, 2002, 41(9): 941–952. doi: 10.1175/1520-0450(2002)041<0941:XBPRMO>2.0.CO;2
    [4]
    RYZHKOV A V, SCHUUR T J, BURGESS D W, et al. The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification[J]. Bulletin of the American Meteorological Society, 2005, 86(6): 809–824. doi: 10.1175/BAMS-86-6-809
    [5]
    CHEN Haonan and CHANDRASEKAR V. The quantitative precipitation estimation system for Dallas-Fort Worth (DFW) urban remote sensing network[J]. Journal of Hydrology, 2015, 531: 259–271. doi: 10.1016/j.jhydrol.2015.05.040
    [6]
    DIXON M and WIENER G. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10(6): 785–797. doi: 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
    [7]
    STENSRUD D J, XUE Ming, WICKER L J, et al. Convective-scale warn-on-forecast system: A vision for 2020[J]. Bulletin of the American Meteorological Society, 2009, 90(10): 1487–1500. doi: 10.1175/2009BAMS2795.1
    [8]
    FUKAO S and HAMAZU K. Radar for Meteorological and Atmospheric Observations[M]. Tokyo: Springer, 2014.
    [9]
    殷加鹏, 李健兵, 庞晨, 等. 一种极化-多普勒气象雷达的射频干扰滤波方法[J]. 雷达学报, 2021, 10(6): 905–918. doi: 10.12000/JR21102

    YIN Jiapeng, LI Jianbing, PANG Chen, et al. A radio frequency interference mitigation method for polarimetric Doppler weather radar[J]. Journal of Radars, 2021, 10(6): 905–918. doi: 10.12000/JR21102
    [10]
    YIN Jiapeng, UNAL C M H, and RUSSCHENBERG H W J. Narrow-band clutter mitigation in spectral polarimetric weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4655–4667. doi: 10.1109/TGRS.2017.2696263
    [11]
    GROGINSKY H L and GLOVER K M. Weather radar canceller design[C]. The 19th Conference on Radar Meteorology, Boston, USA, 1980: 192–198.
    [12]
    SIGGIA A D and PASSARELLI R E. Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation[C]. The 3rd European Conference on Radar Meteorology (ERAD 2004), Visby, Sweden, 2004: 67–73.
    [13]
    HUBBERT J C, DIXON M, ELLIS S M, et al. Weather radar ground clutter. Part I: Identification, modeling, and simulation[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1165–1180. doi: 10.1175/2009JTECHA1159.1
    [14]
    HUBBERT J C, DIXON M, and ELLIS S M. Weather radar ground clutter. Part II: Real-time identification and filtering[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1181–1197. doi: 10.1175/2009JTECHA1160.1
    [15]
    LI Yinguang, ZHANG Guifu, DOVIAK R J, et al. A new approach to detect ground clutter mixed with weather signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2373–2387. doi: 10.1109/TGRS.2012.2209658
    [16]
    LI Nan, WANG Zhenhui, SUN Kangyuan, et al. A quality control method of ground-based weather radar data based on statistics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2211–2219. doi: 10.1109/TGRS.2017.2776562
    [17]
    WARDE D A and TORRES S M. The autocorrelation spectral density for Doppler-weather-radar signal analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 508–518. doi: 10.1109/TGRS.2013.2241775
    [18]
    HUBBERT J C, MEYMARIS G, ROMATSCHKE U, et al. Using a regression ground clutter filter to improve weather radar signal statistics: Theory and simulations[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38(8): 1353–1375. doi: 10.1175/JTECH-D-20-0026.1
    [19]
    KRASNOV O A and YAROVOY A G. Polarimetric micro-Doppler characterization of wind turbines[C]. 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016: 1–5.
    [20]
    UNAL C. Spectral polarimetric radar clutter suppression to enhance atmospheric echoes[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(9): 1781–1797. doi: 10.1175/2009JTECHA1170.1
    [21]
    YIN Jiapeng, UNAL C, and RUSSCHENBERG H. Object-orientated filter design in spectral domain for polarimetric weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 2725–2740. doi: 10.1109/TGRS.2018.2876632
    [22]
    YIN Jiapeng, CHEN Haonan, LI Yongzhen, et al. Clutter mitigation based on spectral depolarization ratio for dual-polarization weather radars[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6131–6145. doi: 10.1109/JSTARS.2021.3088324
    [23]
    BLOCH I and MAÎTRE H. Fuzzy mathematical morphology[J]. Annals of Mathematics and Artificial Intelligence, 1994, 10(1/2): 55–84. doi: 10.1007/BF01530944
    [24]
    SHANNON C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 1949, 28(4): 656–715. doi: 10.1002/j.1538-7305.1949.tb00928.x
    [25]
    LIN Jianhua. Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information Theory, 1991, 37(1): 145–151. doi: 10.1109/18.61115
    [26]
    ENDRES D M and SCHINDELIN J E. A new metric for probability distributions[J]. IEEE Transactions on Information Theory, 2003, 49(7): 1858–1860. doi: 10.1109/tit.2003.813506
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(923) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint