Volume 10 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
LIN Yifeng, SHAN Mingming, KONG Xudong, et al. Orbital angular momentum anti-interference properties analysis of electromagnetic vortex wave[J]. Journal of Radars, 2021, 10(5): 773–784. doi: 10.12000/JR21096
Citation: LIN Yifeng, SHAN Mingming, KONG Xudong, et al. Orbital angular momentum anti-interference properties analysis of electromagnetic vortex wave[J]. Journal of Radars, 2021, 10(5): 773–784. doi: 10.12000/JR21096

Orbital Angular Momentum Anti-interference Properties Analysis of Electromagnetic Vortex Wave

DOI: 10.12000/JR21096
Funds:  National Key R&D Program of China (2018YFA**263)
More Information
  • Corresponding author: LI Long, lilong@mail.xidian.edu.cn
  • Received Date: 2021-07-01
  • Rev Recd Date: 2021-08-28
  • Available Online: 2021-09-07
  • Publish Date: 2021-09-28
  • The electromagnetic vortex wave has demonstrated excellent research value with potential applications in the fields of wireless communication and radar detection and imaging due to its unusual electromagnetic field distribution and theoretically infinite orthogonal Orbital Angular Momentum (OAM) modes. This study analyzes the anti-interference performance of OAM modes in the electromagnetic vortex Radio Frequency (RF) transceiver link primarily from the perspective of the electromagnetic vortex field distributions in space and the OAM modes orthogonality. Planar antenna arrays are designed to generate the electromagnetic vortex beams with respective OAM modes of and in the C band, and the corresponding RF transceiver links are established. The OAM modes’ anti-interference properties under different interference situations are analyzed in the electromagnetic vortex RF transceiver link by using a horn antenna as the interference source. Meanwhile, the corresponding OAM mode spectrum and the OAM modes’ orthogonality are employed as the primary methods in our analysis. Finally, the designed antenna models are fabricated, and the electromagnetic vortex RF transceiver links are measured. The corresponding analyses and conclusions are presented in this study. The OAM modes’ anti-interference performance analysis in the vortex electromagnetic wave’s RF transceiver link can provide a reference for exploring and designing a vortex electromagnetic wave in wireless communication and radar detection and imaging research.

     

  • loading
  • [1]
    YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161
    [2]
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    [3]
    WILLNER A E, WANG Jian, and HUANG Hao. A different angle on light communications[J]. Science, 2012, 337(6095): 655–656. doi: 10.1126/science.1225460
    [4]
    YUE Yang, HUANG Hao, AHMED N, et al. Reconfigurable switching of orbital-angular-momentum-based free-space data channels[J]. Optics Letters, 2013, 38(23): 5118–5121. doi: 10.1364/OL.38.005118
    [5]
    YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
    [6]
    REN Yongxiong, LI Long, XIE Guodong, et al. Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 3151–3161. doi: 10.1109/TWC.2017.2675885
    [7]
    WILLNER A E and LIU Cong. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links[J]. Nanophotonics, 2020, 10(1): 225–233. doi: 10.1515/nanoph-2020-0435
    [8]
    郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [9]
    LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 711–714.
    [10]
    LIU Kang, CHENG Yongqiang, LI Xiang, et al. Microwave-sensing technology using orbital angular momentum: Overview of its advantages[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 112–118. doi: 10.1109/MVT.2018.2890673
    [11]
    JACKSON J D. Classical Electrodynamics[M]. New York: John Wiley & Sons, 1999.
    [12]
    THIDÉ B, TAMBURINI F, THEN H, et al. Angular momentum radio[C]. Proceedings of SPIE 8999, Complex Light and Optical Forces VIII, San Francisco, USA, 2014. doi: 10.1117/12.2041797.
    [13]
    ALLEN L. Orbital angular momentum: A personal memoir[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2087): 20160280. doi: 10.1098/rsta.2016.0280
    [14]
    PADGETT M J. Orbital angular momentum 25 years on [Invited][J]. Optics Express, 2017, 25(10): 11265–11274. doi: 10.1364/OE.25.011265
    [15]
    FRANKE-ARNOLD S, ALLEN L, and PADGETT M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299–313.
    [16]
    THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
    [17]
    MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
    [18]
    TRICHILI A, PARK K H, ZGHAL M, et al. Communicating using spatial mode multiplexing: Potentials, challenges, and perspectives[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3175–3203.
    [19]
    郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091

    GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091
    [20]
    ZHANG Kuang, WANG Yuxiang, YUAN Yueyi, et al. A review of orbital angular momentum vortex beams generation: From traditional methods to metasurfaces[J]. Applied Sciences, 2020, 10(3): 1015. doi: 10.3390/app10031015
    [21]
    TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001
    [22]
    TAMBURINI F, THIDÉ B, BOAGA V, et al. Experimental demonstration of free-space information transfer using phase modulated orbital angular momentum radio[J/OL]. https://arxiv.org/abs/1302.2990v2, 2013.
    [23]
    CHEN Rui, DU Hanyu, and LI Jiandong. Indoor communications with OAM array[C]. 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, 2020: 1–5.
    [24]
    ZHOU Jiatong, CHENG Wenchi, and LIANG Liping. OAM transmission in sparse multipath environments with fading[C]. The ICC 2020 - 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6.
    [25]
    LEI Yi, YANG Yang, WANG Yanzhe, et al. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas[J]. IEEE Wireless Communications Letters, 2021, 10(2): 261–265. doi: 10.1109/LWC.2020.3027006
    [26]
    LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3864–3878. doi: 10.1109/TVT.2020.2966787
    [27]
    SHU Jingyue, DENG Li, LI Shufang, et al. Use OFDM in OAM communication to redcuce multi-path effects[C]. The 3rd International Conference on Electronic Information and Communication Technology, Shenzhen, China, 2020: 54–56.
    [28]
    FENG Qiang, LIANG Jun, and LI Long. Variable scale aperture sampling reception method for multiple orbital angular momentum modes vortex wave[J]. IEEE Access, 2019, 7: 158847–158857. doi: 10.1109/ACCESS.2019.2950112
    [29]
    FENG Qiang, XUE Hao, LIU Yongjie, et al. Multiple orbital angular momentum vortex electromagnetic waves multiplex transmission and demultiplex reception analysis[C]. 2018 IEEE International Conference on Computational Electromagnetics, Chengdu, China, 2018: 1–3.
    [30]
    KAN H K and WATERHOUSE R B. Low cross-polarised patch antenna with single feed[J]. Electronics Letters, 2007, 43(5): 261–262. doi: 10.1049/el:20070224
    [31]
    TONG K F and WONG T P. Circularly polarized U-slot antenna[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(8): 2382–2385. doi: 10.1109/TAP.2007.901930
    [32]
    LI Long and ZHOU Xiaoxiao. Mechanically reconfigurable single-arm spiral antenna array for generation of broadband circularly polarized orbital angular momentum vortex waves[J]. Scientific Reports, 2018, 8(1): 5128. doi: 10.1038/s41598-018-23415-1
    [33]
    LIANG Jun, JING Zhongliang, FENG Qiang, et al. Synthesis and measurement of a circular-polarized deflection OAM vortex beam with sidelobe suppression array[J]. IEEE Access, 2020, 8: 89143–89151. doi: 10.1109/ACCESS.2020.2993877
    [34]
    HU Yiping, ZHENG Shilie, ZHANG Zhuofan, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1043–1047.
    [35]
    ZHENG Shilie, HUI Xiaonan, ZHU Jiangbo, et al. Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture[J]. Optics Express, 2015, 23(9): 12251–12257. doi: 10.1364/OE.23.012251
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2461) PDF downloads(252) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint