Citation: | Yu Han, Shui Penglang, Yang Chunjiao, Shi Sainan. Whitening Degree Evaluation Method to Test Estimate Accuracy of Speckle Covariance Matrix[J]. Journal of Radars, 2017, 6(3): 285-291. doi: 10.12000/JR16146 |
[1] |
Conte E and Longo M. Characterisation of radar clutter as a spherically invariant random process[J]. IEE Proceedings F-Communications, Radar and Signal Processing, 1987, 134(2): 191–197. DOI: 10.1049/ip-f-1:19870035.
|
[2] |
Rangaswamy M, Weiner D D, and Ozturk A. Non-Gaussian random vector identification using spherically invariant random processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 111–124. DOI: 10.1109/7.249117.
|
[3] |
Pulsone N B. Adaptive signal detection in non-Gaussian interference[D]. [Ph.D. dissertation], Northeastern University, 1997.
|
[4] |
Raghavan R S and Pulsone N B. A generalization of the adaptive matched filter receiver for array detection in a class of non-Gaussian interference[C]. Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop, Lexington, MA, USA, Mar. 1996: 499–517.
|
[5] |
Conte E, Lops E, and Ricci G. Adaptive radar detection in compound-Gaussian clutter[C]. Proceedings of the European Signal Processing Conference, Edinburgh, Scotland, UK, Sep. 1994.
|
[6] |
何友, 简涛, 苏峰, 等. 非高斯杂波协方差矩阵估计方法及CFAR特性分析[J]. 中国科学: 信息科学, 2011, 41(1): 90–99. http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201101009.htm
He You, Jian Tao, Su Feng, et al.. CFAR assessment of covariance matrix estimators for non-Gaussian clutter[J]. Scientia Sinica Informationis, 2011, 41(1): 90–99. http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201101009.htm
|
[7] |
孙艳丽, 谢宁波. 基于实测数据的单元平均CFAR检测器性能分析[J]. 兵器装备工程学报, 2016, 37(10): 84–87. DOI: 10.11809/scbgxb2016.10.017.
Sun Yan-li and Xie Ning-bo. Performance analysis of cell average CFAR detector based on measured data[J]. Journal of Sichuan Ordnance, 2016, 37(10): 84–87. DOI: 10.11809/scbgxb2016.10.017.
|
[8] |
Gini F and Greco M. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[J]. Signal Processing, 2002, 82(12): 1847–1859. doi: 10.1016/S0165-1684(02)00315-8
|
[9] |
Pascal F, Chitour Y, Ovarlez J P, et al.. Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 34–48. DOI: 10.1109/TSP.2007.901652.
|
[10] |
Anastassopoulos V, Lampropoulos G A, Drosopoulos A, et al.. High resolution radar clutter statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 43–60. DOI: 10.1109/7.745679.
|
[11] |
Ward K D, Baker C J, and Watts S. Maritime surveillance radar. Part1: Radar scattering from the ocean surface[J]. IEE Proceedings F-Radar and Signal Processing, 1990, 137(2): 51–62. doi: 10.1049/ip-f-2.1990.0009
|
[12] |
Zhou Jie, Chen Dong, and Sun Dewei. K distribution sea clutter modeling and simulation based on ZMNL[C]. Proceedings of the 2015 8th International Conference on Intelligent Computation Technology and Automation, Nanchang, China, Jun. 2015: 506–509. DOI: 10.1109/ ICICTA.2015.279.
|
[13] |
谢洪森, 邹鲲, 杨春英, 等. 海杂波协方差矩阵估计及其对目标检测性能的影响[J]. 系统工程与电子技术, 2011, 33(10): 2174–2178. DOI: 10.3969/j.issn.1001-506X.2011.10.06.
Xie Hong-sen, Zou Kun, Yang Chun-ying, et al.. Sea clutter covariance matrix estimation and its impact on signal detection performance[J]. Systems Engineering and Electronics, 2011, 33(10): 2174–2178. DOI: 10.3969/ j.issn.1001-506X.2011.10.06.
|
[14] |
Shui Peng-lang, Liu Ming, and Xu Shu-wen. Shape-parameter-dependent coherent radar target detection in k-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 451–465. DOI: 10.1109/ TAES.2015.140109.
|
[15] |
Jansson M and Ottersten B. Structured covariance matrix estimation: A parametric approach[C]. Proceedings of the 2000 IEEE International Acoustics, Speech, and Signal Processing, Istanbul, Turkey, Jun. 2000, 5: 3172–3175.
|
[16] |
Conte E, Lops M, and Ricci G. Adaptive detection schemes in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1058–1069. DOI: 10.1109/7.722671.
|
[17] |
Shui Peng-lang, Shi Li-xiang, Yu Han, et al.. Iterative maximum likelihood and outlier-robust bipercentile estimation of parameters of compound-Gaussian clutter with inverse Gaussian texture[J]. IEEE Signal Processing Letters, 2016, 23(11): 1572–1576. DOI: 10.1109/LSP. 2016.2605129.
|
[18] |
宋运忠, 杨丽英. 基于L1范数最小化的逆协方差矩阵估计[J]. 河南师范大学学报(自然科学版), 2016, 44(5): 8–19. DOI: 10.16366/j.cnki.1000-2367.2016.05.002.
Song Yun-zhong and Yang Li-ying. A approach to precision matrix estimation based on L1 norm minimization[J]. Journal of Henan Normal University (Natural Science Edition), 2016, 44(5): 8–19. DOI: 10.16366/j.cnki.1000-2367.2016.05.002.
|