Volume 5 Issue 5
Nov.  2016
Turn off MathJax
Article Contents
Chen Fuming, Li Sheng, An Qiang, Zhang Ziqi, Wang Jianqi. Advancements in Bio-radar Speech Signal Detection Technology[J]. Journal of Radars, 2016, 5(5): 477-486. doi: 10.12000/JR16099
Citation: Chen Fuming, Li Sheng, An Qiang, Zhang Ziqi, Wang Jianqi. Advancements in Bio-radar Speech Signal Detection Technology[J]. Journal of Radars, 2016, 5(5): 477-486. doi: 10.12000/JR16099

Advancements in Bio-radar Speech Signal Detection Technology

doi: 10.12000/JR16099
Funds:

The National Natural Science Foundation of China (61327805, 61371163), The Key Industrial Science and Technology Program of Shaanxi Province, China (2016GY-058)

  • Received Date: 2016-09-13
  • Rev Recd Date: 2016-11-02
  • Publish Date: 2016-10-28
  • Speech signal acquisition is of great significance for human communication. Bio-radar technology has many advantages, such as it is noncontact, noninvasive, safe, highly directional, highly sensitivity, immune to strong acoustical disturbance and penetrable. This technology has important applications in the field of speech detection. In this paper, we first review the developmental history of speech detection technology, and then summarize the status of bio-radar speech detection technology. The basic principles of a bio-radar in detecting speech signals are given, and the performance of three types of bio-radar speech detection systems are compared in this paper. Finally, the potential applications of bio-radar speech signal detection technology are prospected.

     

  • loading
  • [1]
    Wente E C. A condenser transmitter as a uniformly sensitive instrument for the absolute measurement of sound intensity[J]. Physical Review, 1917, 10(1):39.
    [2]
    Scheeper P R, Van der Donk A G H, Olthuis W, et al.. A review of silicon microphones[J]. Sensors and Actuators A:Physical, 1994, 44(1):1-11.
    [3]
    Royer M, Holmen J O, Wurm M A, et al.. ZnO on Si integrated acoustic sensor[J]. Sensors and Actuators, 1983, 4:357-362.
    [4]
    Pedersen M, Olthuis. W, and Bergveld P. A silicon condenser microphone with polyimide diaphragm and backplate[J]. Sensors and Actuators A:Physical, 1997, 63:97-104.
    [5]
    Kronast W, Müller B, Siedel W, et al.. Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap[J]. Sensors and Actuators A:Physical, 2001, 87(3):188-193.
    [6]
    Wu C Y, Chen J M, and Kuo C F. Low polarization voltage and high sensitivity CMOS condenser microphone using stress relaxation design[J]. Procedia Chemistry, 2009, 1(1):859-862.
    [7]
    Shahina A and Yegnanarayana B. Language identification in noisy environments using throat microphone signals[C]. IEEE Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005:400-403.
    [8]
    Santori C M. Bone conduction microphone assembly[P]. Washington, DC, US, 1974:1974-01-22.
    [9]
    Hough J V D, Richard G L, Barton Jr K E, et al.. Direct bone conduction hearing aid device[P]. Washington, DC, US, 1986-09-23.
    [10]
    张杰. 骨传导听说技术在煤矿应急救援的应用[J]. 煤炭科学技术, 2013, 41(8):95-98. Zhang Jie. Application of bone conduction heared technology in coal mine emergency rescue[J]. Coal Science of Technology, 2013, 41(8):95-98.
    [11]
    Li W, Liu M, Zhu Z, et al.. LDV remote voice acquisition and enhancement[C]. IEEE 18th International Conference on Pattern Recognition, 2006, 4:262-265.
    [12]
    Avargel Y and Cohen I. Speech measurements using a laser Doppler vibrometer sensor:Application to speech enhancement[C]. Proceedings of the Hands-Free Speech Communication and Microphone Arrays, Edinburgh, Scotland, 2011:109-114.
    [13]
    Shang J, He Y, Liu D, et al.. Laser Doppler vibrometer for real-time speech-signal acquirement[J]. Chinese Optics Letters, 2009, 7(8):732-733.
    [14]
    Bakhtiari S, Gopalsami N, Elmer T W, et al.. Millimeter wave sensor for far-field standoff vibrometry[C]. Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation, Chicago, IL, USA, 2008:1641-1648.
    [15]
    Li Z W. Millimeter wave radar for detecting the speech signal applications[J]. International Journal of Infrared and Millimeter Waves, 1996, 17(12):2175-2183.
    [16]
    Sharpe S M, Seals J, MacDonald A H, et al.. Non-contact vital signs monitorp[P]. Washington, DC, U.S., 1990.
    [17]
    Caro C G and Bloice J A. Contactless apnoea detector based on radar[J]. The Lancet, 1971, 298(7731):959-961.
    [18]
    Chen K M, Huang Y, Zhang J, et al.. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(1):105-114.
    [19]
    Lohman B, Boric-Lubecke O, Lubecke V M, et al.. A digital signal processor for Doppler radar sensing of vital signs[J]. IEEE Engineering in Medicine and Biology Magazine, 2002, 21(5):161-164.
    [20]
    王健琪, 王海滨, 荆西京, 等. 呼吸, 心率的雷达式非接触检测系统设计与研究[J]. 中国医疗器械杂志, 2001, 25(3):132-135. Wang Jian-qi, Wang Hai-bin, Jing Xi-jing, et al.. The study on non-contact detection of breathing and heartbeat based on radar principles[J]. Chinese Journal of Medical Instrumentation, 2001, 25(3):132-135.
    [21]
    Wang Jianqi, Zheng Chongxun, Lu Guohua, et al.. A new method for identifying the life parameters via radar[J]. EURASIP Journal on Applied Signal Processing, 2007, 2007:031415.
    [22]
    McEwan T E. Ultra-wideband receiver[P]. Washington, DC:U.S., 1996-06-04.
    [23]
    Holzrichter J F, Lea W A, McEwan T E, et al.. Speech coding, recognition, and synthesis using radar and acoustic sensors[R]. University of California Report UCRL-ID-123687, 1996.
    [24]
    Holzrichter J F, Burnett G C, Ng L C, et al.. Speech articulator measurements using low power EM-wave sensors[J]. The Journal of the Acoustical Society of America, 1998, 103(1):622-625.
    [25]
    Burnett G C, Holzrichter J F, Ng L C, et al.. The use of Glottal Electromagnetic Micropower Sensors (GEMS) in determining a voiced excitation function[J]. The Journal of the Acoustical Society of America, 1999, 106(4):2183-2184.
    [26]
    Ng L C, Burnett G C, Holzrichter J F, et al.. Denoising of human speech using combined acoustic and EM sensor signal processing[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP'00, 2000, 1:229-232.
    [27]
    Titze I R, Story B H, Burnett G C, et al.. Comparison between electroglottography and electromagnetic glottography[J]. The Journal of the Acoustical Society of America, 2000, 107(1):581-588.
    [28]
    Staderini E M. UWB radars in medicine[J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17(1):13-18.
    [29]
    Holzrichter J F, Ng L C, Burke G J, et al.. Measurements of glottal structure dynamics[J]. The Journal of the Acoustical Society of America, 2005, 117(3):1373-1385.
    [30]
    Eid A M and Wallace J W. Ultrawideband speech sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8:1414-1417.
    [31]
    Lin C S, Chang S F, Chang C C, et al.. Microwave human vocal vibration signal detection based on doppler radar technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(8):2299-2306.
    [32]
    Hu R and Anderson D V. Single acoustic-channel speech enhancement based on glottal correlation using non-acoustic sensor[C]. INTERSPEECH, 2004.
    [33]
    Hu R and Raj B. A robust voice activity detector using an acoustic Doppler radar[C]. IEEE Workshop on Automatic Speech Recognition and Understanding, 2005:319-324.
    [34]
    Quatieri T F, Brady K, Messing D, et al.. Exploiting nonacoustic sensors for speech encoding[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(2):533-544.
    [35]
    Demiroglu C, Kamath S D, and Anderson D V. Segmentation-Based Speech Enhancement for Intelligibility Improvement in MELP Coders Using Auxiliary Sensors[C]. ICASSP (1), 2005:797-800.
    [36]
    Xiao Y, Lin J, Boric-Lubecke O, et al.. A Ka-band low power Doppler radar system for remote detection of cardiopulmonary motion[C]. IEEE Engineering in Medicine and Biology 27th Annual Conference, 2006:7151-7154.
    [37]
    刘诚睿, 王健琪, 荆西京, 等. 非接触式语音探测系统[J]. 医疗卫生装备, 2006, 27(6):28-29. Liu Cheng-rui, Wang Jian-qi, Jing Xi-jing, et al.. Non-contact speech detection system[J]. Chinese Medical Equipment Journal, 2006, 27(6):28-29.
    [38]
    Li S, Wang J Q, Niu M, et al.. Millimeter wave conduct speech enhancement based on auditory masking properties[J]. Microwave and Optical Technology Letters, 2008, 50(8):2109-2114.
    [39]
    Bakhtiari S, Elmer T W, Cox N M, et al.. Compact millimeter-wave sensor for remote monitoring of vital signs[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3):830-841.
    [40]
    Li S, Tian Y, Lu G, et al.. A 94-GHz millimeter-wave sensor for speech signal acquisition[J]. Sensors, 2013, 13(11):14248-14260.
    [41]
    蒋金, 陈长兴, 周天翔, 等. 毫米波大气窗口在临近空间等离子体鞘套中的传播特性[J]. 空间科学学报, 2016, 36(1):56-62. Jiang Jin, Chen Chang-xing, Zhou Tian-xiang, et al.. Study on atmospheric window of millimeter wave propagation in near space plasma sheath[J]. Chinese Journal of Space Science, 2016, 36(1):56-62.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2256) PDF downloads(1532) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint