Turn off MathJax
Article Contents
WANG Yingfu, YIN Jiapeng, LU Zhonghao, et al. Analysis of the influence of distributed interrupted sampling repeating signals on airborne interferometer parameter measurements[J]. Journal of Radars, in press. doi: 10.12000/JR24090
Citation: WANG Yingfu, YIN Jiapeng, LU Zhonghao, et al. Analysis of the influence of distributed interrupted sampling repeating signals on airborne interferometer parameter measurements[J]. Journal of Radars, in press. doi: 10.12000/JR24090

Analysis of the influence of distributed interrupted sampling repeating signals on airborne interferometer parameter measurements

doi: 10.12000/JR24090
More Information
  • Corresponding author: YIN Jiapeng, yinjiapeng@nudt.edu.cn
  • Received Date: 2024-05-16
  • Rev Recd Date: 2024-06-20
  • Available Online: 2024-06-24
  • In the context of counter-reconnaissance against airborne interferometers, this study proposes a jamming method designed to disrupt the parameter measurement capabilities of interferometers by generating distributed signals based on an interrupted-sampling repeating technique. An emitter and a transmitting jammer are combined to form a distributed jamming system. The transmitting jammer samples the emitter signal and transmits the repeating signal to an interferometer. A quasi-synchronization constraint is established according to the change in the positional relation between the airborne interferometer and the interference system. Additionally, a model for the superposition of distributed signals is provided. Then, the mathematical principle underlying distributed signal jamming is expounded according to the pulse spatial and temporal parameter measurement using the interferometer system. Moreover, the influence of various signal parameters on the jamming effect is analyzed to propose a principle for distributed signal design. Simulation and darkroom experiments show that the proposed method can effectively disrupt the accurate measurement of the pulse spatial domain and time domain parameters, such as azimuth-of-arrival, pulse width, and repetition interval.

     

  • loading
  • [1]
    谭华有. 电子侦察装备概述[J]. 无线电工程, 1993(2): 55–61.

    TAN Huayou. Overview of electronic reconnaissance equipment[J]. Radio Engineering of China, 1993(2): 55–61.
    [2]
    韩建立, 杨荣芳, 沈吉明, 等. 机载雷达侦察的情报分析与处理[J]. 海军航空工程学院学报, 2002, 17(3): 364–366. doi: 10.3969/j.issn.1673-1522.2002.03.019.

    HAN Jianli, YANG Rongfang, SHEN Jiming, et al. The intelligence analysis and disposal of airborne radar reconnaissance[J]. Journal of Naval Aeronautical Engineering Institute, 2002, 17(3): 364–366. doi: 10.3969/j.issn.1673-1522.2002.03.019.
    [3]
    顾敏剑. 多波束比幅测向系统精度分析[J]. 舰船电子对抗, 2007, 30(3): 70–73. doi: 10.3969/j.issn.1673-9167.2007.03.020.

    GU Minjian. Accuracy analysis on multi-beam amplitude-comparison direction finding system[J]. Shipboard Electronic Countermeasure, 2007, 30(3): 70–73. doi: 10.3969/j.issn.1673-9167.2007.03.020.
    [4]
    袁孝康. 相位干涉仪测向定位研究[J]. 上海航天, 1999(3): 3–9.

    YUAN Xiaokang. Study on direction-finding and position with phase interferometers[J]. Aerospace Shanghai, 1999(3): 3–9.
    [5]
    陈旗, 黄高明, 宋士琼, 等. 基于空间谱估计的测向技术[J]. 火力与指挥控制, 2010, 35(8): 41–44. doi: 10.3969/j.issn.1002-0640.2010.08.011.

    CHEN Qi, HUANG Gaoming, SONG Shiqiong, et al. Research on direction finding based on spatial spectrum estimation[J]. Fire Control & Command Control, 2010, 35(8): 41–44. doi: 10.3969/j.issn.1002-0640.2010.08.011.
    [6]
    刘治甬, 徐海洋. 基于数字波束形成侦察技术研究[J]. 现代信息科技, 2020, 4(15): 70–72,75. doi: 10.19850/j.cnki.2096-4706.2020.15.022.

    LIU Zhiyong and XU Haiyang. Research on reconnaissance technology based on digital beamforming[J]. Modern Information Technology, 2020, 4(15): 70–72,75. doi: 10.19850/j.cnki.2096-4706.2020.15.022.
    [7]
    于周吉. 电子侦察设备整机设计与发展趋势探究[J]. 舰船电子对抗, 2021, 44(5): 6–11. doi: 10.16426/j.cnki.jcdzdk.2021.05.002.

    YU Zhouji. Research into machine design and development trend of electronic reconnaissance equipment[J]. Shipboard Electronic Countermeasure, 2021, 44(5): 6–11. doi: 10.16426/j.cnki.jcdzdk.2021.05.002.
    [8]
    隋金坪, 刘振, 刘丽, 等. 雷达辐射源信号分选研究进展[J]. 雷达学报, 2022, 11(3): 418–433. doi: 10.12000/JR21147.

    SUI Jinping, LIU Zhen, LIU Li, et al. Progress in radar emitter signal deinterleaving[J]. Journal of Radars, 2022, 11(3): 418–433. doi: 10.12000/JR21147.
    [9]
    MARDIA H K. New techniques for the deinterleaving of repetitive sequences[J]. IEE Proceedings F (Radar and Signal Processing), 1989, 136(4): 149–154. doi: 10.1049/ip-f-2.1989.0025.
    [10]
    MILOJEVIĆ D J and POPOVIC B M. Improved algorithm for the deinterleaving of radar pulses[J]. IEE Proceedings F (Radar and Signal Processing), 1992, 139(1): 98–104. doi: 10.1049/ip-f-2.1992.0012.
    [11]
    陈涛, 王天航, 郭立民. 基于PRI变换的雷达脉冲序列搜索方法[J]. 系统工程与电子技术, 2017, 39(6): 1261–1267. doi: 10.3969/j.issn.1001-506X.2017.06.12.

    CHEN Tao, WANG Tianhang, and GUO Limin. Sequence searching methods of radar signal pulses based on PRI transform algorithm[J]. Systems Engineering and Electronics, 2017, 39(6): 1261–1267. doi: 10.3969/j.issn.1001-506X.2017.06.12.
    [12]
    蒋平虎, 苏萍贞, 赵乾海. 一种针对干涉仪测向系统的反电子侦察技术方法探讨[J]. 中国电子科学研究院学报, 2019, 14(5): 488–491. doi: 10.3969/j.issn.1673-5692.2019.05.009.

    JIANG Pinghu, SU Pingzhen, and ZHAO Qianhai. Discussion on an anti-electronic reconnaissance technique for interferometer direction-finding system[J]. Journal of CAEIT, 2019, 14(5): 488–491. doi: 10.3969/j.issn.1673-5692.2019.05.009.
    [13]
    郑坤, 汪兵. 同时同频多源信号对干涉仪测角的影响分析[J]. 电子信息对抗技术, 2018, 33(6): 1–5. doi: 10.3969/j.issn.1674-2230.2018.06.001.

    ZHENG Kun and WANG Bing. Influences analysis on interferometer direction-finding of simultaneous multiple source signals under common-frequency[J]. Electronic Information Warfare Technology, 2018, 33(6): 1–5. doi: 10.3969/j.issn.1674-2230.2018.06.001.
    [14]
    张保群. 一种抗SDIF分选的脉冲重复间隔参差设计方法[J]. 兵器装备工程学报, 2016, 37(9): 87–91,114. doi: 10.11809/scbgxb2016.09.021.

    ZHANG Baoqun. A design method of PRI stagger countering the SDIF sorting algorithm[J]. Journal of Ordnance Equipment Engineering, 2016, 37(9): 87–91,114. doi: 10.11809/scbgxb2016.09.021.
    [15]
    徐梁昊, 姜秋喜, 潘继飞, 等. 一种抗重频分选的反侦察方法[J]. 四川兵工学报, 2015, 36(7): 117–120. doi: 10.11809/scbgxb2015.07.030.

    XU Lianghao, JIANG Qiuxi, PAN Jifei, et al. Method of counter reconnaissance based on PRI sorting algorithm[J]. Journal of Sichuan Ordnance, 2015, 36(7): 117–120. doi: 10.11809/scbgxb2015.07.030.
    [16]
    曾涛, 殷丕磊, 杨小鹏, 等. 分布式全相参雷达系统时间与相位同步方案研究[J]. 雷达学报, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104.

    ZENG Tao, YIN Pilei, YANG Xiaopeng, et al. Time and phase synchronization for distributed aperture coherent radar[J]. Journal of Radars, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104.
    [17]
    刘晓瑜, 王彤, 吴建新, 等. 基于MIMO直达波的无人机分布式相参雷达相位同步方法[J]. 系统工程与电子技术, 2020, 42(5): 1014–1025. doi: 10.3969/j.issn.1001-506X.2020.05.07.

    LIU Xiaoyu, WANG Tong, WU Jianxin, et al. Phase synchronization method based on MIMO direct path wave for UAV distributed coherent aperture radar[J]. Systems Engineering and Electronics, 2020, 42(5): 1014–1025. doi: 10.3969/j.issn.1001-506X.2020.05.07.
    [18]
    王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学: E辑, 2006, 36(8): 891–901. DOI: 10.3969/j.issn.1674-7259.2006.08.007.

    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series F: Information Sciences, 2007, 50(1): 113–123. DOI: 10.3969/j.issn.1674-7259.2006.08.007.
    [19]
    刘巧玲, 刘忠, 傅其祥, 等. 基于DRFM的间歇采样转发干扰系统设计与实现[J]. 雷达与对抗, 2007(3): 20–24. doi: 10.19341/j.cnki.issn.1009-0401.2007.03.006.

    LIU Qiaoling, LIU Zhong, FU Qixiang, et al. A DRFM-based repeater jammer with interrupted sampling[J]. Radar & ECM, 2007(3): 20–24. doi: 10.19341/j.cnki.issn.1009-0401.2007.03.006.
    [20]
    刘忠. 基于DRFM的线性调频脉冲压缩雷达干扰新技术[D]. [博士论文], 国防科学技术大学, 2006: 75–84.

    LIU Zhong. Jamming technique for countering LFM pulse compression radar based on digital radio frequency memory[D]. [Ph.D. dissertation], National University of Defense Technology, 2006: 75–84.
    [21]
    CHEN Wenwu, CAI Zhengyu, CHEN Rushan, et al. Optimizing polyphase sequences for Orthogonal netted radar systems[J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 529–535. doi: 10.1109/JSEE.2012.00067.
    [22]
    JIA Jinwei, LIU Limin, and HAN Zhuangzhi. Anti-sorting signal design applied to radio frequency stealth radar based on pulse repetition interval slide[C]. 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 2022: 453–457. DOI: 10.1109/icpics55264.2022.9873748.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(47) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint