Volume 10 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
JIA Yuxiang, WANG Jiafu, CHEN Wei, et al. Research progress on rapid optimization design methods of metamaterials based on intelligent algorithms[J]. Journal of Radars, 2021, 10(2): 220–239. doi: 10.12000/JR21027
Citation: JIA Yuxiang, WANG Jiafu, CHEN Wei, et al. Research progress on rapid optimization design methods of metamaterials based on intelligent algorithms[J]. Journal of Radars, 2021, 10(2): 220–239. doi: 10.12000/JR21027

Research Progress on Rapid Optimization Design Methods of Metamaterials Based on Intelligent Algorithms

DOI: 10.12000/JR21027
Funds:  The National Natural Science Foundation of China (61971435, 61971341, 61801509, 61901508), The National Key Research and Development Program of China (2017YFA0700201)
More Information
  • Corresponding author: WANG Jiafu, wangjifu1981@126.com
  • Received Date: 2021-03-11
  • Rev Recd Date: 2021-04-20
  • Available Online: 2021-04-29
  • Publish Date: 2021-04-28
  • At present, research on metamaterials is continuously advancing to engineering applications, and great progress is being achieved in the areas of physical mechanisms and effects, design theory and methods, and fabrication and measurement. However, traditional metamaterials design mainly relies on artificial design and optimization. In the face of large-scale engineering applications, it is impossible to realize the rapid overall design of a large number of metamaterial structural units. In recent years, the proportion of intelligent algorithms covering traditional heuristic algorithms and neural network algorithms in metamaterials design has increased gradually. Metamaterials design based on intelligent algorithms can surpass the limitation of traditional methods in different substrate systems, frequency variation, and different performance indicators, offering the unique advantages of rapid design and architectural innovation. This paper summarizes the application of several typical intelligent algorithms, including the genetic algorithm, Hopfield network algorithm, and deep learning algorithm in metamaterials design, which include forward designs and an inverse design. The use of intelligent algorithms can achieve the rapid design of frequency selective surfaces under different performance indexes, multi-mechanisms composite absorber metamaterials, flat focusing, and abnormal reflection metasurfaces, providing the necessary support for design methods while promoting the engineering applications of metamaterials.

     

  • loading
  • [1]
    PENDRY J B. A chiral route to negative refraction[J]. Science, 2004, 306(5700): 1353–1355. doi: 10.1126/science.1104467
    [2]
    PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773–4776. doi: 10.1103/PhysRevLett.76.4773
    [3]
    PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084. doi: 10.1109/22.798002
    [4]
    SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184–4187. doi: 10.1103/PhysRevLett.84.4184
    [5]
    CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light: Science & Applications, 2016, 5(11): e16172.
    [6]
    XIE Boyang, TANG Kun, CHENG Hua, et al. Coding acoustic metasurfaces[J]. Advanced Materials, 2017, 29(6): 1603507. doi: 10.1002/adma.201603507
    [7]
    史峰, 王辉, 郁磊, 等. MATLAB智能算法30个案例分析[M]. 北京: 北京航空航天大学出版社, 2011.

    SHI Feng, WANG Hui, YU Lei, et al. Analysis of 30 Cases of MATLAB Intelligent Algorithm[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2011.
    [8]
    武飞周, 薛源. 智能算法综述[J]. 工程地质计算机应用, 2005, (2): 9–15.

    WU Feizhou and XUE Yuan. Review of intelligent algorithms[J]. Engineering Geology Computer Application, 2005, (2): 9–15.
    [9]
    胡涵, 李振宇. 多目标进化算法性能评价指标综述[J]. 软件导刊, 2019, 18(9): 1–4. doi: 10.11907/rjdk.191024

    HU Han and LI Zhenyu. A survey of performance indicators for multi-objective evolutionary algorithms[J]. Software Guide, 2019, 18(9): 1–4. doi: 10.11907/rjdk.191024
    [10]
    梅志伟. 多目标进化算法综述[J]. 软件导刊, 2017, 16(6): 204–207. doi: 10.11907/rjdk.171169

    MEI Zhiwei. Overview of multi objective evolutionary algorithm[J]. Software Guide, 2017, 16(6): 204–207. doi: 10.11907/rjdk.171169
    [11]
    CAI Haoyuan, SUN Yi, WANG Xiaoping, et al. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm[J]. Optics Express, 2020, 28(10): 15347–15359. doi: 10.1364/OE.393423
    [12]
    HUANG Yixing, FAN Qunfu, CHEN Jin, et al. Optimization of flexible multilayered metastructure fabricated by dielectric-magnetic nano lossy composites with broadband microwave absorption[J]. Composites Science and Technology, 2020, 191: 108066. doi: 10.1016/j.compscitech.2020.108066
    [13]
    QIU Tianshuo, SHI Xin, WANG Jiafu, et al. Deep learning: A rapid and efficient route to automatic metasurface design[J]. Advanced Science, 2019, 6(12): 1900128. doi: 10.1002/advs.201900128
    [14]
    TITTL A, LEITIS A, LIU Mingkai, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105–1109. doi: 10.1126/science.aas9768
    [15]
    MA Wei, CHENG Feng, and LIU Yongmin. Deep-learning enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326–6334. doi: 10.1021/acsnano.8b03569
    [16]
    LIU Che, YU Wenming, MA Qian, et al. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network[J]. Photonics Research, 2021, 9(4): B159–B167. doi: 10.1364/PRJ.416287
    [17]
    PEURIFOY J, SHEN Yichen, YANG Yi, et al. Nanophotonic inverse design using artificial neural network[C]. Frontiers in Optics 2017, Washington, USA, 2017: FTh4A.4. doi: 10.1364/FIO.2017.FTh4A.4.
    [18]
    VAI M M, WU Shuichi, LI Bin, et al. Reverse modeling of microwave circuits with bidirectional neural network models[J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(10): 1492–1494. doi: 10.1109/22.721152
    [19]
    KABIR H, WANG Ying, YU Ming, et al. Neural network inverse modeling and applications to microwave filter design[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(4): 867–879. doi: 10.1109/TMTT.2008.919078
    [20]
    SELLERI S, MANETTI S, and PELOSI G. Neural network applications in microwave device design[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2002, 12(1): 90–97. doi: 10.1002/mmce.7001
    [21]
    LIU Dianjing, TAN Yixuan, KHORAM E, et al. Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 2018, 5(4): 1365–1369. doi: 10.1021/acsphotonics.7b01377
    [22]
    PEURIFOY J, SHEN Yichen, JING Li, et al. Nanophotonic particle simulation and inverse design using artificial neural networks[J]. Science Advances, 2018, 4(6): eaar4206. doi: 10.1126/sciadv.aar4206
    [23]
    随赛. 新型人工电磁表面拓扑优化设计与应用研究[D]. [博士论文], 空军工程大学, 2019.

    SUI Sai. Research on topology optimization design and application of new artificial electromagnetic surface[D]. [Ph. D. dissertation], Air Force Engineering University, 2019.
    [24]
    LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [25]
    鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展[J]. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701

    BAO Di, SHEN Xiaopeng, and CUI Tiejun. Progress of terahertz metamaterials[J]. Acta Physica Sinica, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [26]
    SHEN Yang, ZHANG Jieqiu, PANG Yongqiang, et al. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation[J]. Optics Express, 2018, 26(12): 15665–15674. doi: 10.1364/OE.26.015665
    [27]
    PANG Yongqiang, SHEN Yang, LI Yongfeng, et al. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption[J]. Journal of Applied Physics, 2018, 123(15): 155106. doi: 10.1063/1.5023778
    [28]
    PANG Yongqiang, LI Yongfeng, WANG Jiafu, et al. Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms[J]. Carbon, 2019, 147: 112–119. doi: 10.1016/j.carbon.2019.03.004
    [29]
    SUI Sai, MA Hua, WANG Jiafu, et al. Absorptive coding metasurface for further radar cross section reduction[J]. Journal of Physics D: Applied Physics, 2018, 51(6): 065603. doi: 10.1088/1361-6463/aaa3be
    [30]
    SUI Sai, MA Hua, WANG Jiafu, et al. Synthetic design for a microwave absorber and antireflection to achieve wideband scattering reduction[J]. Journal of Physics D: Applied Physics, 2019, 52(3): 035103. doi: 10.1088/1361-6463/aaeb12
    [31]
    CUI Yanxia, FUNG K H, XU Jun, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443–1447. doi: 10.1021/nl204118h
    [32]
    FU Jiahui, WU Qun, ZHANG Shaoqing, et al. Design of multi-layers absorbers for low frequency applications[C]. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, China, 2010. doi: 10.1109/APEMC.2010.5475478.
    [33]
    SHEN Yang, ZHANG Jieqiu, WANG Jiafu, et al. Multistage dispersion engineering in a three-dimensional plasmonic structure for outstanding broadband absorption[J]. Optical Materials Express, 2019, 9(3): 1539–1550. doi: 10.1364/OME.9.001539
    [34]
    WU C, NEUNER III B, SHVETS G, et al. Large-area wide-angle spectrally selective plasmonic absorber[J]. Physical Review B, 2011, 84(7): 075102. doi: 10.1103/PhysRevB.84.075102
    [35]
    CHENG Yongzhi, GONG Rongzhou, NIE Yan, et al. A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors[J]. Chinese Physics B, 2012, 21(12): 127801. doi: 10.1088/1674-1056/21/12/127801
    [36]
    SHEN Yang, ZHANG Jieqiu, WANG Wenjie, et al. Overcoming the pixel-density limit in plasmonic absorbing structure for broadband absorption enhancement[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 674–678. doi: 10.1109/LAWP.2019.2900846
    [37]
    ZHU Ruichao, WANG Jiafu, SUI Sai, et al. Wideband absorbing plasmonic structures via profile optimization based on genetic algorithm[J]. Frontiers in Physics, 2020, 8: 231. doi: 10.3389/fphy.2020.00231
    [38]
    NONG Jifu. Global exponential stability of delayed Hopfield neural networks[C]. 2012 International Conference on Computer Science and Information Processing, Xi’an, China, 2012. doi: 10.1109/CSIP.2012.6308827.
    [39]
    AN Jinliang, GAO Jia, LEI Jinhui, et al. An improved algorithm for TSP problem solving with Hopfield neural networks[J]. Advanced Materials Research, 2010, 143/144: 538–542. doi: 10.4028/www.scientific.net/AMR.143-144.538
    [40]
    AIYER S V B, NIRANJAN M, and FALLSIDE F. A theoretical investigation into the performance of the Hopfield model[J]. IEEE Transactions on Neural Networks, 1990, 1(2): 204–215. doi: 10.1109/72.80232
    [41]
    ZHU Ruichao, QIU Tianshuo, WANG Jiafu, et al. Metasurface design by a hopfield network: Finding a customized phase response in a broadband[J]. Journal of Physics D: Applied Physics, 2020, 53(41): 415001. doi: 10.1088/1361-6463/ab9785
    [42]
    VAN DEN DRIESSCHE P and ZOU Xingfu. Global attractivity in delayed hopfield neural network models[J]. SIAM Journal on Applied Mathematics, 1998, 58(6): 1878–1890. doi: 10.1137/S0036139997321219
    [43]
    RECH P C. Chaos and hyperchaos in a Hopfield neural network[J]. Neurocomputing, 2011, 74(17): 3361–3364. doi: 10.1016/j.neucom.2011.05.016
    [44]
    SELL D, YANG Jianji, DOSHAY S, et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 2017, 17(6): 3752–3757. doi: 10.1021/acs.nanolett.7b01082
    [45]
    FOROUZMAND A and MOSALLAEI H. Composite multilayer shared-aperture nanostructures: A functional multispectral control[J]. ACS Photonics, 2018, 5(4): 1427–1439. doi: 10.1021/acsphotonics.7b01441
    [46]
    TIPRAQSA P, CRASWELL E T, NOBLE A D, et al. Resource integration for multiple benefits: Multifunctionality of integrated farming systems in Northeast Thailand[J]. Agricultural Systems, 2007, 94(3): 694–703. doi: 10.1016/j.agsy.2007.02.009
    [47]
    LING Yonghong, HUANG Lirong, HONG Wei, et al. Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation[J]. Optics Express, 2017, 25(24): 29812–29821. doi: 10.1364/OE.25.029812
    [48]
    MAGUID E, YULEVICH I, YANNAI M, et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light: Science & Applications, 2017, 6(8): e17027.
    [49]
    HUANG Cheng, ZHANG Changlei, YANG Jianing, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485
    [50]
    ZHU Ruichao, QIU Tianshuo, WANG Jiafu, et al. Multiplexing the aperture of a metasurface: Inverse design via deep-learning-forward genetic algorithm[J]. Journal of Physics D: Applied Physics, 2020, 53(45): 455002. doi: 10.1088/1361-6463/aba64f
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2836) PDF downloads(511) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint