Citation: | CUI Anjing, LI Daojing, ZHOU Kai, et al. Research on the method of composing very low frequency signals based on the staggered array [J]. Journal of Radars, 2020, 9(5): 925–938. doi: 10.12000/JR20082 |
[1] |
汪谋. 地质雷达探测效果影响因素研究[J]. 雷达科学与技术, 2007, 5(2): 86–90.
WANG Mou. Research on influencing factors of GPR’s detection effectiveness[J]. Radar Science and Technology, 2007, 5(2): 86–90.
|
[2] |
卓贤军, 陆建勋, 赵国泽, 等. 极低频探地(WEM)工程[J]. 中国工程科学, 2011, 13(9): 42–50.
ZHUO Xianjun, LU Jianxun, ZHAO Guoze, et al. The extremely low frequency engineering project using WEM for underground exploration[J]. Strategic Study of CAE, 2011, 13(9): 42–50.
|
[3] |
卓贤军, 陆建勋. “极低频探地工程”在资源探测和地震预测中的应用与展望[J]. 舰船科学技术, 2010, 32(6): 3–7, 30.
ZHUO Xianjun and LU Jianxun. Application and prospect of WEM to resource exploration and earthquake predication[J]. Ship Science and Technology, 2010, 32(6): 3–7, 30.
|
[4] |
施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析[J]. 物理学报, 2019, 68(18): 188401.
SHI Wei, ZHOU Qiang, and LIU Bin. Performance analysis of spinning magnet as mechanical antenna[J]. Acta Physica Sinica, 2019, 68(18): 188401.
|
[5] |
周强, 姚富强, 施伟, 等. 机械式低频天线机理及其关键技术研究[J]. 中国科学: 技术科学, 2020, 50(1): 69–84. doi: 10.1360/SST-2019-0118
ZHOU Qiang, YAO Fuqiang, SHI Wei, et al. Research on mechanism and key technology of mechanical antenna for a low-frequency transmission[J]. Scientia Sinica Technologica, 2020, 50(1): 69–84. doi: 10.1360/SST-2019-0118
|
[6] |
崔岸婧, 李道京, 周凯, 等. 阵列结构下的低频信号合成方法研究[J]. 物理学报, 2020, 69(19): 194101. doi: 10.7498/aps.69.20200501
CUI Anjing, LI Daojing, ZHOU Kai, et al. Research on the method of composing low frequency signals based on array structures[J]. Acta Physica Sinica, 2020, 69(19): 194101. doi: 10.7498/aps.69.20200501
|
[7] |
王劲东, 薛洪波, 张艺腾, 等. 高精度航空地磁矢量测量技术[C]. 2018年中国地球科学联合学术年会论文集(二十八)——专题56: 煤炭资源与矿山地球物理、专题58: 地球物理探测方法与仪器新技术, 北京, 2018: 28, 44.
WANG Jindong, XUE Hongbo, ZHANG Yiteng, et al. High precision airborne geomagnetic vector measurement technique[C]. Annual Meeting of Chinese Geoscience Union, Beijing, China, 2018: 28, 44.
|
[8] |
HALLIDAY D, RESNICK R, and WALKER J. Fundamentals of Physics[M]. Weinheim: Wiley, 2014: 1135–1137.
|
[9] |
别业广. 电磁波的多普勒效应[J]. 物理与工程, 2003, 13(4): 62, 32.
BIE Yeguang. The Doppler effect of electromagnetic waves[J]. Physics and Engineering, 2003, 13(4): 62, 32.
|
[10] |
高炳坤, 王凤林. 相对论多普勒效应的简易推导[J]. 大学物理, 2003, 22(8): 15–16.
GAO Bingkun and WANG Fenglin. A concise deduction of relativistic Doppler effect[J]. College Physics, 2003, 22(8): 15–16.
|
[11] |
严欣达, 程先卿. 由相位不变性讨论光波的多普勒效应[J]. 大学物理, 1987, (11): 25.
YAN Xinda and CHENG Xianqing. The Doppler effect of light wave is discussed from phase invariance[J]. College Physics, 1987, (11): 25.
|
[12] |
王景雪, 汤正新, 陈庆东, 等. 基于同时的相对性对钟慢尺缩效应的再认识[J]. 大学物理, 2009, 28(10): 24–27.
WANG Jingxue, TANG Zhengxin, CHEN Qingdong, et al. Recognition on time dilation and length contraction effect based on relativity of simultaneity[J]. College Physics, 2009, 28(10): 24–27.
|
[13] |
张三慧. 时间膨胀与多普勒效应[J]. 大学物理, 1990, (9): 31–32.
ZHANG Sanhui. Time dilation and Doppler effect[J]. College Physics, 1990, (9): 31–32.
|
[14] |
王建, 郑一农, 何子远. 阵列天线理论与工程应用[M]. 北京: 电子工业出版社, 2015: 8.
WANG Jian, ZHENG Yinong, and HE Ziyuan. Antenna Array Theory and Engineering Applications[M]. Beijing: Publishing House of Electronics Industry, 2015: 8.
|
[15] |
丁鹭飞, 耿富录, 陈建春. 雷达原理[M]. 5版. 北京: 电子工业出版社, 2014: 253–254.
DING Lufei, GENG Fulu, and CHEN Jianchun. Radar Principles[M]. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 253–254.
|
[16] |
吴翊, 朱炬波, 易东云, 等. 关于多普勒频率转换成距离变化率公式的讨论[J]. 中国空间科学技术, 1997, (6): 45–49.
WU Yi, ZHU Jubo, YI Dongyun, et al. Discuss on formula of Doppler frequency to velocity[J]. Chinese Space Science and Technology, 1997, (6): 45–49.
|
[17] |
魏钟铨. 合成孔径雷达卫星[M]. 北京: 科学出版社, 2001: 204–206.
WEI Zhongquan. Synthetic Aperture Radar Satellite[M]. Beijing: Science Press, 2001: 204–206.
|
[18] |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 125–132.
BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 125–132.
|