Citation: | LYU Kun, MA Hui, and LIU Hongwei. Three-dimensional imaging using the electromagnetic vortex synthetic aperture radar[J]. Journal of Radars, 2021, 10(5): 691–698. doi: 10.12000/JR21125 |
[1] |
GISIN N. Quantum Science and Technology[M]. Springer International Publishing AG, 2017.
|
[2] |
MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
|
[3] |
TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: first experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001
|
[4] |
EDFORS O and JOHANSSON A J. Is orbital angular momentum (OAM) based radio communication an unexploited area?[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126–1131. doi: 10.1109/TAP.2011.2173142
|
[5] |
TAMBURINI F, THIDÉ B, MARI E, et al. Reply to comment on ‘Encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118002. doi: 10.1088/1367-2630/14/11/118002
|
[6] |
TAMBURINI F, THIDÉ B, BOAGA V, et al. Experimental demonstration of free-space information transfer using phase modulated orbital angular momentum radio[J]. arXiv: 1302.2990, 2013.
|
[7] |
YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5(1): 4876. doi: 10.1038/ncomms5876
|
[8] |
李蹊, 冯志勇, 冯建元, 等. 电磁涡旋及其在无线通信中的应用[J]. 电讯技术, 2015, 55(10): 1067–1073. doi: 10.3969/j.issn.1001-893x.2015.10.001
LI Xi, FENG Zhiyong, FENG Jianyuan, et al. Electromagnetic vortex and its application in wireless communication[J]. Telecommunication Engineering, 2015, 55(10): 1067–1073. doi: 10.3969/j.issn.1001-893x.2015.10.001
|
[9] |
CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar[M]. New York: Wiley-Interscience, 1991.
|
[10] |
CHENG Q, ALOMAINY A, and HAO Y. Compressive millimeter-wave phased array imaging[J]. IEEE Access, 2016, 4: 9580–9588. doi: 10.1109/ACCESS.2016.2635118
|
[11] |
LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714. doi: 10.1109/LAWP.2014.2376970
|
[12] |
BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 764–767. doi: 10.1109/LAWP.2018.2814980
|
[13] |
洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109
HONG Wen, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
|
[14] |
杜永兴, 仝宗俊, 秦岭, 等. 基于改进BP算法的电磁涡旋成像方法[J]. 雷达科学与技术, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012
DU Yongxing, TONG Zongjun, QIN Ling, et al. Electromagnetic vortex imaging method based on improved BP algorithm[J]. Radar Science and Technology, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012
|
[15] |
SHU Gaofeng, WANG Nan, WANG Wentao, et al. A novel vortex synthetic aperture radar imaging system: decreasing the pulse repetition frequency without increasing the antenna aperture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, in press. doi: 10.1109/TGRS.2021.3053650
|
[16] |
WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814
|
[17] |
BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Synthetic aperture radar interferometry based on vortex electromagnetic waves[J]. IEEE Access, 2019, 7: 82693–82700. doi: 10.1109/ACCESS.2019.2908209
|
[18] |
MA Hui and LIU Hongwei. Waveform diversity-based generation of convergent beam carrying orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5487–5495. doi: 10.1109/TAP.2020.2981724
|
[1] | FU Hongwei, ZHANG Zhang, LUO Yu, ZHOU Zhichao, CHEN Zhanye, JIAN Xin, CHA Hao. Passive Radar Using LEO Communication Satellite Signals: An Overview and Prospect[J]. Journal of Radars. doi: 10.12000/JR24219 |
[2] | ZHOU Zibo, ZHANG Chaowei, XIA Saiqiang, XU Daoming, GAO Yan, ZENG Xiaoshuang. Feature Extraction of Rotor Blade Targets Based on Phase Compensation in a Passive Bistatic Radar[J]. Journal of Radars, 2021, 10(6): 929-943. doi: 10.12000/JR21132 |
[3] | WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111 |
[4] | JIN Biao, LI Cong, ZHANG Zhenkai. Group Target Track Initiation Method Aided by Echo Amplitude Information[J]. Journal of Radars, 2020, 9(4): 723-729. doi: 10.12000/JR19088 |
[5] | Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062 |
[6] | Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125 |
[7] | Wang Benjing, Yi Jianxin, Wan Xianrong, Dan Yangpeng. Inter-frame Ambiguity Analysis and Suppression of LTE Signal for Passive Radar[J]. Journal of Radars, 2018, 7(4): 514-522. doi: 10.12000/JR18025 |
[8] | Wan Xianrong, Sun Xuwang, Yi Jianxin, Lü Min, Rao Yunhua. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television[J]. Journal of Radars, 2017, 6(1): 65-72. doi: 10.12000/JR16134 |
[9] | Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108 |
[10] | Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080 |
[11] | Cheng Feng, Zeng Qing-ping, Gong Zi-ping. First-order Sea Clutter Modeling and Simulation of High Frequency Passive Radar[J]. Journal of Radars, 2014, 3(6): 720-726. doi: 10.12000/JR14131 |
[12] | Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157 |
[13] | Wu Yong, Wang Jun. Application of Mixed Kalman Filter to Passive Radar Target Tracking[J]. Journal of Radars, 2014, 3(6): 652-659. doi: 10.12000/JR14113 |
[14] | Wan Wei, Li Huang, Hong Yang. Issues on Multi-polarization of GNSS-R for Passive Radar Detection[J]. Journal of Radars, 2014, 3(6): 641-651. doi: 10.12000/JR14095 |
[15] | Wan Xian-rong, Yi Jian-xin, Cheng Feng, Rao Yun-hua, Gong Zi-ping, Ke Heng-yu. Single Frequency Network Based Distributed Passive Radar Technology[J]. Journal of Radars, 2014, 3(6): 623-631. doi: 10.12000/JR14156 |
[16] | Zhang Qiang, Wan Xian-rong, Fu Yan, Rao Yun-hua, Gong Zi-ping. Ambiguity Function Analysis and Processing for Passive Radar Based on CDR Digital Audio Broadcasting[J]. Journal of Radars, 2014, 3(6): 702-710. doi: 10.12000/JR14050 |
[17] | Lu Chuan-guo, Feng Xin-xi, Kong Yun-bo, Zeng Rong, Li Hong-Ying. Track Initiation Based on Parallel Hough Transform[J]. Journal of Radars, 2013, 2(3): 292-299. doi: 10.3724/SP.J.1300.2013.13036 |
[18] | RAO Yun-Hua, ZHU Feng-Yuan, ZHANG Xiu-Zhi, WAN Xian-Rong, GONG Zi-Ping. Ambiguity Function Analysis and Side Peaks Suppression of WiFi Signal for Passive Radar[J]. Journal of Radars, 2012, 1(3): 225-231. doi: 10.3724/SP.J.1300.2012.20061 |
[19] | Wan Xian-rong. An Overview on Development of Passive Radar Based on the LowFrequency Band Digital Broadcasting and TV Signals[J]. Journal of Radars, 2012, 1(2): 109-123. doi: 10.3724/SP.J.1300.2012.20027 |
[20] | Wan Xian-rong, Zhao Zhi-xin, Ke Heng-yu, Cheng Feng, Rao Yun-hua, Gong Zi-ping. Experimental Research of HF Passive Radar Based on DRM Digital AM Broadcasting[J]. Journal of Radars, 2012, 1(1): 11-18. doi: 10.3724/SP.J.1300.2013.20001 |
1. | 田正秋,何思远,蔡志灏,王筱祎. 介质粗糙地面上目标散射中心正向建模与分析. 电波科学学报. 2025(01): 12-20 . ![]() | |
2. | 靳明振,杨申,吴中杰,张会强,刘盛启. 基于RANSAC和三维谱峰分析的全姿态散射中心建模. 雷达学报. 2024(02): 471-484 . ![]() | |
3. | 罗汝,赵凌君,何奇山,计科峰,匡纲要. SAR图像飞机目标智能检测识别技术研究进展与展望. 雷达学报. 2024(02): 307-330 . ![]() | |
4. | 王粲雨,蒋李兵,任笑圆,王壮. 空间目标ISAR图像三维基元表示方法. 雷达学报. 2024(03): 682-695 . ![]() | |
5. | 陆睿民,李卫东,王锐,张帆,李沐阳,胡程. 最优字典选择多频段雷达信号宽带融合. 电子与信息学报. 2024(05): 2076-2086 . ![]() | |
6. | 李臻,化梦博,杨泽望,刘建,何思远,边志丹. 雷达目标散射中心正向模型扩展及散射特性分析. 电讯技术. 2024(11): 1850-1857 . ![]() | |
7. | YIN Hongcheng,YAN Hua. Parametric modeling and applications of target scattering centers: a review. Journal of Systems Engineering and Electronics. 2024(06): 1411-1427 . ![]() | |
8. | 孙圣凯,何姿,管灵,董纯柱,樊振宏,丁大志,殷红成. 基于散射中心模型的目标电磁特性智能生成网络研究. 电波科学学报. 2023(05): 835-844 . ![]() | |
9. | 魏少明,洪文衍,王俊,耿雪胤,金明明. 基于改进矩阵束的超宽带一维散射中心提取方法. 电子与信息学报. 2022(04): 1231-1240 . ![]() | |
10. | 邹嘉玮,何思远,杨泽望,刘建,边志丹. 复杂目标雷达图像形成机理分析. 科学技术与工程. 2022(28): 12468-12475 . ![]() | |
11. | 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . ![]() | |
12. | 李高源,王晋宇,张长弓,冯博迪,高宇歌,杨海涛. SAR图像仿真方法研究综述. 计算机工程与应用. 2021(15): 62-72 . ![]() |