Citation: | Xiang Zhe, Chen Baixiao. Range-angle Decoupled Transmit Beamforming with Frequency Diverse Array (in English)[J]. Journal of Radars, 2018, 7(2): 212-219. doi: 10.12000/JR16113 |
It has been shown that Frequency Diverse Arrays (FDA) exhibit a range-angle dependent beam steering feature by employing a uniform frequency increment across the array elements. However, this beam pattern generates maxima at multiple range values, possibly leading to loss of signal-to-interference-plus-noise ratio when the interferences are located at any of the maxima. Herein, we prove that the beam pattern of FDA is range-periodic and propose the basic criteria for the FDA configuration to decouple the range and angle. In an illuminated space, a single-maximum beam pattern can be obtained by configuring the frequency increment between the elements. Specific examples have been discussed herein, and the simulation results verify the proposed theory.
[1] |
Antonik P, Wicks M C, and Griffiths H D. Range dependent beamforming using element level waveform diversity[C]. International Waveform Diversity Design Conference, Las Vegas, NV, USA, Jan. 2006: 22–27.
|
[2] |
Secmen M, Demir S, and Hizal A. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. IEEE Radar Conference, Boston, MA, USA, Apr. 2007: 427–430.
|
[3] |
Antonik P, Wicks M C, and Griffiths H D. Multi-mission, multi-mode waveform diversity[C]. IEEE Radar Conference, Verona, NY, USA, Apr. 2006: 580–582.
|
[4] |
Zhuang L and Liu X Z. Precisely beam steering for frequency diverse arrays based on frequency offset selection[C]. International Radar Conference, Bordeaux, France, Oct. 2009: 1–4.
|
[5] |
Chen Y G, Li Y T, and Wu Y H. Research on the linear frequency diverse array performance[C]. IEEE International Conference on Signal Processing, Beijing, China, Oct. 2010: 2324–2327.
|
[6] |
Sammartino P F, Backer C J, Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. DOI: 10.1109/TAES.2013.6404099
|
[7] |
Xu J W, Liao G S, and Zhu S Q. Receive beamforming of frequency diverse array radar systems[C]. 31th URSI General Assembly and Scientific Symposium (URSIGASS), Beijing, China, Aug. 2014: 1–5.
|
[8] |
Wang W Q. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas Propagation, 2014, 61(8): 4073–4081.
|
[9] |
Khan W, Qureshi I M. Frequency diverse array radar with time dependent frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 758–761. DOI: 10.1109/LAWP.2014.2315215
|
[10] |
Wang W Q, So H C, Shao H. Nonuniform frequency diverse array for range-angle imaging of targets[J].IEEE Sensors Journal, 2014, 14(8): 2469–2476. DOI: 10.1109/JSEN.2014.2304720
|
[11] |
Khan W, Qureshi I M, Saeed S. Frequency diverse array radarwith logarithmically increasing frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 499–502. DOI: 10.1109/LAWP.2014.2368977
|
[12] |
Xu Y H, Shi X W, Xu J W. Range-angle-dependent beamforming of pulsed frequency diverse array[J]. IEEE Transactions on Antennas Propagation, 2015, 63(7): 3262–2367. DOI: 10.1109/TAP.2015.2423698
|
[13] |
Gao K, Wang W Q. Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets[J]. IET Microwaves,Antennas&Propagation, 2016, 10(8): 880–884.
|
[14] |
Gao K, Wang W Q. Transmit beamspace design for multi-carrier frequency diverse array sensor[J]. IEEE Sensors Journal, 2016, 16(14): 5709–5714. DOI: 10.1109/JSEN.2016.2573379
|
[15] |
Shao H, Dai J, Xiong J. Dot-shaped range-angle beampattern synthesis for frequency diverse array[J]. IEEE Antennas and Wireless Propagation(published online)
|
[16] |
Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas Propagation, 1986, 34(1): 276–280.
|
[1] | LIU Deshun, XIA Deping, CHEN Lu, MA Yanfeng. Joint Design of LPI Transmit Waveform and Receive Beamforming Based on Neural Networks for FDA-MIMO[J]. Journal of Radars, 2024, 13(6): 1239-1251. doi: 10.12000/JR24140 |
[2] | TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033 |
[3] | LI Zhengjie, XIE Junwei, ZHANG Haowei, WEN Quan, LIU Bin. A Fast Power Allocation Algorithm in a Collocated MIMO Radar under Low Interception Backgrounds[J]. Journal of Radars, 2023, 12(3): 602-615. doi: 10.12000/JR22203 |
[4] | WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072 |
[5] | YAO Yu, LI Zeqing, FAN Wen, DU Xiaolin, WU Lenan. Spectrally Compatible Waveform Design for MIMO Radar Based on ABSUM Method[J]. Journal of Radars, 2022, 11(4): 543-556. doi: 10.12000/JR22138 |
[6] | FAN Wen, YU Baoguo, CHEN Jing, ZHANG Hang, LI Chunze. Joint Waveform Optimization and Antenna Position Selection for MIMO Radar Beam Scanning[J]. Journal of Radars, 2022, 11(4): 530-542. doi: 10.12000/JR22135 |
[7] | ZHENG Guimei, SONG Yuwei, HU Guoping, LI Binbin, ZHANG Dong. Height Measurement for Meter-wave MIMO Radar Based on Block Orthogonal Matching Pursuit Preprocessing[J]. Journal of Radars, 2020, 9(5): 908-915. doi: 10.12000/JR20042 |
[8] | ZHANG Jinsong, XING Mengdao, SUN Guangcai. A Water Segmentation Algorithm for SAR Image Based on Dense Depthwise Separable Convolution[J]. Journal of Radars, 2019, 8(3): 400-412. doi: 10.12000/JR19008 |
[9] | ZHAO Xianbin, YAN Wei, AI Weihua, LU Wen, MA Shuo. Research on Calculation Method of Doppler Centroid Shift from Airborne Synthetic Aperture Radar for Ocean Feature Retrieval[J]. Journal of Radars, 2019, 8(3): 391-399. doi: 10.12000/JR19020 |
[10] | Wang Jie, Ding Chibiao, Liang Xingdong, Chen Longyong, Qi Zhimei. Research Outline of Airborne MIMO-SAR System with Same Time-frequency Coverage[J]. Journal of Radars, 2018, 7(2): 220-234. doi: 10.12000/JR17046 |
[11] | Wang Pei, Sun Huifeng, Yu Weidong. A Novel Wireless Internal Calibration Method of Spaceborne SAR[J]. Journal of Radars, 2018, 7(4): 425-436. doi: 10.12000/JR18005 |
[12] | Xu Zhen, Wang Robert, Li Ning, Zhang Heng, Zhang Lei. A Novel Approach to Change Detection in SAR Images with CNN Classification[J]. Journal of Radars, 2017, 6(5): 483-491. doi: 10.12000/JR17075 |
[13] | Zhao Junxiang, Liang Xingdong, Li Yanlei. Change Detection in SAR CCD Based on the Likelihood Change Statistics[J]. Journal of Radars, 2017, 6(2): 186-194. doi: 10.12000/JR16065 |
[14] | Wang Fulai, Pang Chen, Li Yongzhen, Wang Xuesong. Orthogonal Polyphase Coded Waveform Design Method for Simultaneous Fully Polarimetric Radar[J]. Journal of Radars, 2017, 6(4): 340-348. doi: 10.12000/JR16150 |
[15] | Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046 |
[16] | Jiang Hai, Song Hong-jun. Improved MISO-SAR System Based on BiDirectional Imaging[J]. Journal of Radars, 2015, 4(5): 571-581. doi: 10.12000/JR15022 |
[17] | Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008 |
[18] | Gao Yang, Yu Wei-dong, Feng Jin, Zheng Shi-chao, Yang Liang. A SAR Back Projection Autofocusing Algorithm Based on Legendre Approximation[J]. Journal of Radars, 2014, 3(2): 176-182. doi: 10.3724/SP.J.1300.2014.14011 |
[19] | Meng Da-di, Hu Yu-xin, Ding Chi-biao. An Efficient Algorithm to Processing SAR Data on GPU[J]. Journal of Radars, 2013, 2(2): 210-217. doi: 10.3724/SP.J.1300.2013.20098 |
[20] | Li Fang-fang, Zhan Yi, Hu Dong-hui, Ding Chi-biao. A Fast Method for InSAR Phase Unwrapping Based on Quality Guide[J]. Journal of Radars, 2012, 1(2): 196-202. doi: 10.3724/SP.J.1300.2012.20023 |
1. | 白杨,殷红成,黄培康,刘芳. 基于宽带极化纯度估计的极化测量定标修正. 系统工程与电子技术. 2024(02): 428-436 . ![]() | |
2. | 李泽榕,杨勇. 基于X波段无人机暗室测量数据的雷达探测性能分析. 信息对抗技术. 2023(06): 61-70 . ![]() | |
3. | 李郝亮,陈思伟. 极化测量误差对人造目标散射解译性能的影响研究. 现代雷达. 2022(01): 1-8 . ![]() | |
4. | 白杨,侯鑫,刘芳,殷红成. 基于宽带相位修正的散射矩阵变极化基测量. 系统工程与电子技术. 2022(02): 506-511 . ![]() | |
5. | 杨勇,王雪松,张斌. 基于时频检测与极化匹配的雷达无人机检测方法. 电子与信息学报. 2021(03): 509-515 . ![]() | |
6. | 张斌,杨勇,逯旺旺,王雪松,肖顺平. Ku波段固定翼无人机全极化RCS统计特性研究. 现代雷达. 2020(06): 41-47 . ![]() | |
7. | 王雪松,杨勇. 海杂波与目标极化特性研究进展. 电波科学学报. 2019(06): 665-675 . ![]() | |
8. | 章鹏飞,李刚,霍超颖,殷红成. 基于双雷达微动特征融合的无人机分类识别. 雷达学报. 2018(05): 557-564 . ![]() |