Citation: | null doi: 10.12000/JR19108 |
[1] |
LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: CRC, 2009.
|
[2] |
TUR M, CHIN K C, and GOODMAN J W. When is speckle noise multiplicative?[J]. Applied Optics, 1982, 21(7): 1157–1159. doi: 10.1364/AO.21.001157
|
[3] |
ARGENTI F, LAPINI A, BIANCHI T, et al. A tutorial on speckle reduction in synthetic aperture radar images[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(3): 6–35. doi: 10.1109/MGRS.2013.2277512
|
[4] |
GOMEZ L, OSPINA R, and FRERY A C. Unassisted quantitative evaluation of despeckling filters[J]. Remote Sensing, 2017, 9(4): 389. doi: 10.3390/rs9040389
|
[5] |
HARALICK R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786–804. doi: 10.1109/PROC.1979.11328
|
[6] |
VITALE S, COZZOLINO D, SCARPA G, et al. Guided patchwise nonlocal SAR despeckling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6484–6498. doi: 10.1109/TGRS.2019.2906412
|
[7] |
GOMEZ L, OSPINA R, and FRERY A C. Statistical properties of an unassisted image quality index for SAR imagery[J]. Remote Sensing, 2019, 11(4): 385. doi: 10.3390/rs11040385
|
[8] |
FRERY A and WU J C. Operational statistics for SAR imagery[EB/OL]. https://github.com/acfrery/Statistics-SAR-Intensity.git, 2019.
|
[9] |
MANSKI C F. Analog Estimation Methods in Econometrics[M]. New York: Chapman & Hall, 1988.
|
[10] |
MEJAIL M E, JACOBO-BERLLES J C, FRERY A C, et al. Classification of SAR images using a general and tractable multiplicative model[J]. International Journal of Remote Sensing, 2003, 24(18): 3565–3582. doi: 10.1080/0143116021000053274
|
[11] |
CINTRA R J, FRERY A C, and NASCIMENTO A D C. Parametric and nonparametric tests for speckled imagery[J]. Pattern Analysis and Applications, 2013, 16(2): 141–161. doi: 10.1007/s10044-011-0249-3
|
[12] |
TSYBAKOV A B. Introduction to Nonparametric Estimation[M]. New York: Springer, 2009.
|
[13] |
WASSERMAN L. All of Nonparametric Statistics[M]. New York: Springer, 2006.
|
[14] |
GIBBONS J D and CHAKRABORTI S. Nonparametric Statistical Inference[M]. 4th ed. New York: Marcel Dekker, 2003.
|
[15] |
PALACIO M G, FERRERO S B, and FRERY A C. Revisiting the effect of spatial resolution on information content based on classification results[J]. International Journal of Remote Sensing, 2019, 40(12): 4489–4505. doi: 10.1080/01431161.2019.1569278
|
[16] |
NEGRI R G, FRERY A C, SILVA W B, et al. Region-based classification of PolSAR data using radial basis kernel functions with stochastic distances[J]. International Journal of Digital Earth, 2019, 12(6): 699–719. doi: 10.1080/17538947.2018.1474958
|
[17] |
FRERY A C, SANT’ANNA S J S, MASCARENHAS N D A, et al. Robust inference techniques for speckle noise reduction in 1-look amplitude SAR images[J]. Applied Signal Processing, 1997, 4(2): 61–76.
|
[18] |
CHAN D, REY A, GAMBINI J, et al. Low-cost robust estimation for the single-look GI0 model using the Pareto distribution[J]. IEEE Geoscience and Remote Sensing Letters, 2019. doi: 10.1109/LGRS.2019.2956635
|
[19] |
BUSTOS O H, LUCINI M M, and FRERY A C. M-estimators of roughness and scale for
|
[20] |
MOSCHETTI E, PALACIO M G, PICCO M, et al. On the use of Lee’s protocol for speckle-reducing techniques[J]. Latin American Applied Research, 2006, 36(2): 115–121.
|
[21] |
ALLENDE H, FRERY A C, GALBIATI J, et al. M-estimators with asymmetric influence functions: The
|
[22] |
CASELLA G and BERGER R L. Statistical Inference[M]. 2nd ed. Pacific Grove: Duxbury, 2002.
|
[23] |
NASCIMENTO A D C, CINTRA R J, and FRERY A C. Hypothesis testing in speckled data with stochastic distances[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 373–385. doi: 10.1109/TGRS.2009.2025498
|
[24] |
GOUDAIL F and RÉFRÉGIER P. Contrast definition for optical coherent polarimetric images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7): 947–951. doi: 10.1109/TPAMI.2004.22
|
[25] |
ALI S M and SILVEY S D. A general class of coefficients of divergence of one distribution from another[J]. Journal of the Royal Statistical Society. Series B (Methodological)
|
[26] |
CSISZÁR I. Information-type measures of difference of probability distributions and indirect observations[J]. Studia Scientiarum Mathematicarum Hungarica, 1967, 2: 299–318.
|
[27] |
SALICRÚ M, MORALES D, MENÉNDEZ M L, et al. On the applications of divergence type measures in testing statistical hypotheses[J]. Journal of Multivariate Analysis, 1994, 51(2): 372–391. doi: 10.1006/jmva.1994.1068
|
[28] |
COVER T M and THOMAS J A. Elements of Information Theory[M]. 2nd ed. New York: John Wiley & Son, 1991.
|
[29] |
RÉNYI A. On measures of entropy and information[C]. The 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1961: 547–561.
|
[30] |
FUKUNAGA K. Introduction to Statistical Pattern Recognition[M]. 2nd ed. San Diego: Academic, 1990.
|
[31] |
DIACONIS P and ZABEL S L. Updating subjective probability[J]. Journal of the American Statistical Association, 1982, 77(380): 822–830. doi: 10.1080/01621459.1982.10477893
|
[32] |
BURBEA J and RAO C. On the convexity of some divergence measures based on entropy functions[J]. IEEE Transactions on Information Theory, 1982, 28(3): 489–495. doi: 10.1109/TIT.1982.1056497
|
[33] |
BURBEA J and RAO C R. Entropy differential metric, distance and divergence measures in probability spaces: A unified approach[J]. Journal of Multivariate Analysis, 1982, 12(4): 575–596. doi: 10.1016/0047-259X(82)90065-3
|
[34] |
SEGHOUANE A K and AMARI S I. The AIC criterion and symmetrizing the Kullback-Leibler divergence[J]. IEEE Transactions on Neural Networks, 2007, 18(1): 97–106. doi: 10.1109/TNN.2006.882813
|
[35] |
SALICRÚ M, MENÉNDEZ M L, MORALES D, et al. Asymptotic distribution of (h, ϕ)-entropy[J]. Communications in Statistics-Theory and Methods, 1993, 22(7): 2015–2031. doi: 10.1080/03610929308831131
|
[36] |
PARDO L, MORALES D, SALICRÚ M, et al. Generalized divergence measures: Information matrices, amount of information, asymptotic distribution, and its applications to test statistical hypotheses[J]. Information Sciences, 1995, 84(3/4): 181–198.
|
[37] |
PARDO L, MORALES D, SALICRÚ M, et al. Large sample behavior of entropy measures when parameters are estimated[J]. Communications in Statistics – Theory and Methods, 1997, 26(2): 483–501. doi: 10.1080/03610929708831929
|
[38] |
FRERY A C, CINTRA R J, and NASCIMENTO A D C. Entropy-based statistical analysis of PolSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3733–3743. doi: 10.1109/TGRS.2012.2222029
|
[39] |
HAVRDA J and CHARVÁT F. Quantification method of classification processes: Concept of structural α-entropy[J]. Kybernetika, 1967, 3: 30–35.
|
[40] |
ATKINSON C and MITCHELL A F S. Rao’s distance measure[J]. Sankhyā: The Indian Journal of Statistics, Series A, 1981, 43(3): 345–365.
|
[41] |
MENÉNDEZ M L, MORALES D, PARDO L, et al. Statistical tests based on geodesic distances[J]. Applied Mathematics Letters, 1995, 8(1): 65–69. doi: 10.1016/0893-9659(94)00112-P
|
[42] |
NARANJO-TORRES J, GAMBINI J, and FRERY A C. The geodesic distance between
|
[43] |
FRERY A C and GAMBINI J. Comparing samples from the
|
[44] |
GAO Gui. Statistical modeling of SAR images: A survey[J]. Sensors, 2010, 10(1): 775–795. doi: 10.3390/s100100775
|
[45] |
FRERY A C, MÜLLER H J, YANASSE C C F, et al. A model for extremely heterogeneous clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 648–659. doi: 10.1109/36.581981
|
[46] |
CHAN D, REY A, GAMBINI J, et al. Sampling from the
|
[47] |
HORN R. The DLR airborne SAR PROJECT E-SAR[C]. 1996 IEEE International Geoscience and Remote Sensing Symposium, Lincoln, USA, 1996: 1624–1628.
|
[48] |
GAMBINI J, MEJAIL M E, JACOBO-BERLLES J, et al. Feature extraction in speckled imagery using dynamic B-spline deformable contours under the
|
[49] |
GAMBINI J, MEJAIL M E, JACOBO-BERLLES J, et al. Accuracy of edge detection methods with local information in speckled imagery[J]. Statistics and Computing, 2008, 18(1): 15–26. doi: 10.1007/s11222-007-9034-y
|
[50] |
FRERY A C, JACOBO-BERLLES J, GAMBINI J, et al. Polarimetric SAR image segmentation with B-Splines and a new statistical model[J]. Multidimensional Systems and Signal Processing, 2010, 21(4): 319–342. doi: 10.1007/s11045-010-0113-4
|
[51] |
GAMBINI J, CASSETTI J, LUCINI M M, et al. Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 365–375. doi: 10.1109/JSTARS.2014.2346017
|
[52] |
BUADES A, COLL B, and MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490–530.
|
[53] |
BUADES A, COLL B, and MOREL J M. Image denoising methods: A new nonlocal principle[J]. SIAM Review, 2010, 52(1): 113–147. doi: 10.1137/090773908
|
[54] |
TEUBER T and LANG A. A new similarity measure for nonlocal filtering in the presence of multiplicative noise[J]. Computational Statistics & Data Analysis, 2012, 56(12): 3821–3842. doi: 10.1016/j.csda.2012.05.009
|
[55] |
PENNA P A A and MASCARENHAS N D A. SAR speckle nonlocal filtering with statistical modeling of Haar wavelet coefficients and stochastic distances[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7194–7208. doi: 10.1109/TGRS.2019.2912153
|
[56] |
FERRAIOLI G, PASCAZIO V, and SCHIRINZI G. Ratio-based nonlocal anisotropic despeckling approach for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7785–7798. doi: 10.1109/TGRS.2019.2916465
|
[57] |
LEE J S, HOPPEL K W, MANGO S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017–1028. doi: 10.1109/36.312890
|
[58] |
HAGEDORN M, SMITH P J, BONES P J, et al. A trivariate chi-squared distribution derived from the complex Wishart distribution[J]. Journal of Multivariate Analysis, 2006, 97(3): 655–674. doi: 10.1016/j.jmva.2005.05.014
|
[59] |
DENG Xinping, LÓPEZ-MARTÍNEZ C, CHEN Jinsong, et al. Statistical modeling of polarimetric SAR data: A survey and challenges[J]. Remote Sensing, 2017, 9(4): 348. doi: 10.3390/rs9040348
|
[60] |
Core Team R. R: A language and environment for statistical computing, R foundation for statistical computing, Vienna, Austria[EB/OL]. https://www.R-project.org/, 2019.
|
[61] |
ANFINSEN S N, DOULGERIS A P, and ELTOFT T Ø. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3795–3809. doi: 10.1109/TGRS.2009.2019269
|
[62] |
FRERY A C, NASCIMENTO A D C, and CINTRA R J. Analytic expressions for stochastic distances between relaxed complex Wishart distributions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1213–1226. doi: 10.1109/TGRS.2013.2248737
|
[63] |
MENÉNDEZ M L, MORALES D, PARDO L, et al. (h,
|
[64] |
NASCIMENTO A D C, FRERY A C, and CINTRA R J. Detecting changes in fully polarimetric SAR imagery with statistical information theory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1380–1392. doi: 10.1109/TGRS.2018.2866367
|
[65] |
COELHO D F G, CINTRA R J, FRERY A C, et al. Fast matrix inversion and determinant computation for polarimetric synthetic aperture radar[J]. Computers & Geosciences, 2018, 119: 109–114.
|
[66] |
TORRES L, SANT’ANNA S J S, DA COSTA FREITAS C, et al. Speckle reduction in polarimetric SAR imagery with stochastic distances and nonlocal means[J]. Pattern Recognition, 2014, 47(1): 141–157. doi: 10.1016/j.patcog.2013.04.001
|
[67] |
DELEDALLE C A, DENIS L Ï, and TUPIN F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2661–2672. doi: 10.1109/TIP.2009.2029593
|
[68] |
CHEN Jiong, CHEN Yilun, AN Wentao, et al. Nonlocal filtering for polarimetric SAR data: A pretest approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1744–1754. doi: 10.1109/TGRS.2010.2087763
|
[69] |
ZHONG Hua, LI Yongwei, and JIAO Licheng. SAR image despeckling using Bayesian nonlocal means filter with sigma preselection[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 809–813. doi: 10.1109/LGRS.2011.2112331
|
[70] |
DELEDALLE C A, DUVAL V, and SALMON J. Non-local methods with shape-adaptive patches (NLM-SAP)[J]. Journal of Mathematical Imaging and Vision, 2012, 43(2): 103–120. doi: 10.1007/s10851-011-0294-y
|
[71] |
SILVA W B, FREITAS C C, SANT’ANNA S J S, et al. Classification of segments in PolSAR imagery by minimum stochastic distances between Wishart distributions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1263–1273. doi: 10.1109/JSTARS.2013.2248132
|
[72] |
GOMEZ L, ALVAREZ L, MAZORRA L, et al. Classification of complex Wishart matrices with a diffusion-reaction system guided by stochastic distances[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2056): 20150118. doi: 10.1098/rsta.2015.0118
|
[73] |
GOMEZ L, ALVAREZ L, MAZORRA L, et al. Fully PolSAR image classification using machine learning techniques and reaction-diffusion systems[J]. Neurocomputing, 2017, 255: 52–60. doi: 10.1016/j.neucom.2016.08.140
|
[74] |
NASCIMENTO A D C, HORTA M M, FRERY A C, et al. Comparing edge detection methods based on stochastic entropies and distances for PolSAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(2): 648–663. doi: 10.1109/JSTARS.2013.2266319
|
[75] |
De BORBA A A, MARENGONI M, and FRERY A C. Fusion of evidences for edge detection in PolSAR images[C]. 2019 TENGARSS, Kochi, India, 2019, in press.
|
[76] |
BHATTACHARYA A, MUHURI A, DE S, et al. Modifying the Yamaguchi four-component decomposition scattering powers using a stochastic distance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3497–3506. doi: 10.1109/JSTARS.2015.2420683
|
[77] |
CONRADSEN K, NIELSEN A A, SCHOU J, et al. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 4–19. doi: 10.1109/TGRS.2002.808066
|
[78] |
NIELSEN A A, CONRADSEN K, and SKRIVER H. Change detection in full and dual polarization, single-and multifrequency SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4041–4048. doi: 10.1109/JSTARS.2015.2416434
|
[79] |
RATHA D, BHATTACHARYA A, and FRERY A C. Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 151–155. doi: 10.1109/LGRS.2017.2778749
|
[80] |
RATHA D, GAMBA P, BHATTACHARYA A, et al. Novel techniques for built-up area extraction from polarimetric SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2019. doi: 10.1109/LGRS.2019.2914913
|
[81] |
RATHA D, MANDAL D, KUMAR V, et al. A generalized volume scattering model-based vegetation index from polarimetric SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1791–1795. doi: 10.1109/LGRS.2019.2907703
|
[82] |
RATHA D, POTTIER E, BHATTACHARYA A, et al. A PolSAR scattering power factorization framework and novel roll-invariant parameters based unsupervised classification scheme using a geodesic distance[J]. arXiv:1906.11577, 2019.
|
[83] |
FERNANDES D and FRERY A C. Statistical properties of geodesic distances between samples and elementary scatterers in PolSAR imagery[C]. 2019 TENGARSS, Kochi, India, 2019, in press.
|
[84] |
YUE D X, XU F, FRERY A C, and JIN Q. A generalized Gaussian coherent scatterer model for correlated SAR texture[J]. IEEE Transactions on Geoscience and Remote Sensing, in press.
|