Volume 8 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
LIU Puyu, ZOU Xihua, LI Yang, et al. Multi-antenna remote differential monitoring system based on a single GNSS-over-fiber architecture[J]. Journal of Radars, 2019, 8(2): 197–204. doi: 10.12000/JR19015
Citation: LIU Puyu, ZOU Xihua, LI Yang, et al. Multi-antenna remote differential monitoring system based on a single GNSS-over-fiber architecture[J]. Journal of Radars, 2019, 8(2): 197–204. doi: 10.12000/JR19015

Multi-antenna Remote Differential Monitoring System Based on a Single GNSS-over-fiber Architecture

DOI: 10.12000/JR19015
Funds:  The National High-tech R&D Program of China (863 Program) (2015AA016903), The National Natural Science Foundation of China (61775185)
More Information
  • Corresponding author: ZOU Xihua,  zouxihua@swjtu.edu.cn
  • Received Date: 2019-01-29
  • Rev Recd Date: 2019-03-15
  • Available Online: 2019-04-08
  • Publish Date: 2019-04-01
  • In this study, we designed and demonstrated the performance of a multi-antenna remote differential monitoring system based on a single GNSS-over-fiber architecture. In this system, multiple GNSS signals are received by remote antennas through a microwave photonic link and are then transmitted to local end points. To enable fine positioning, we established a double differential model equation for use between the carrier phase of each remotely received signal and the reference GNSS signal, with the help of the time division mode using a high-speed optical switch. In our experiment, we established a 10 km microwave photonic link among three remote monitoring points. We estimate the resulting positioning accuracy to be within several millimeters and we obtained a response time of less than 10 ms. Compared with traditional single-antenna schemes, our designed system has significant advantages with respect to coverage area, real-time response time, and the performance cost of large-scale monitoring at no cost to the positioning accuracy. As such, this system will find important applications for the monitoring of large-scale civil engineering and natural environments.

     

  • loading
  • [1]
    谢钢. 全球导航卫星系统原理: GPS、格洛纳斯和伽利略系统[M]. 北京: 电子工业出版社, 2013.

    XIE Gang. Principles of GNSS: GPS, GLONASS, and Galileo[M]. Beijing: Publishing House of Electronics Industry, 2013.
    [2]
    姚连璧, 姚平, 王人鹏, 等. 南浦大桥形变GPS动态监测试验及结果分析[J]. 同济大学学报(自然科学版), 2008, 36(12): 1633–1636, 1664. doi: 10.3321/j.issn:0253-374X.2008.12.007

    YAO Lianbi, YAO Ping, WANG Renpeng, et al. GPS-based dynamic monitoring and analysis of Nanpu Bridge deformation[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1633–1636, 1664. doi: 10.3321/j.issn:0253-374X.2008.12.007
    [3]
    刘根友, 薛怀平, 郝晓光, 等. 三峡库区秭归GPS滑坡监测网数据分析[J]. 大地测量与地球动力学, 2009, 29(3): 70–73. doi: 10.3969/j.issn.1671-5942.2009.03.013

    LIU Genyou, XUE Huaiping, HAO Xiaoguang, et al. Data analysis of GPS slide monitoring network in Zigui zone of Three Gorges reservoir area[J]. Journal of Geodesy and Geodynamics, 2009, 29(3): 70–73. doi: 10.3969/j.issn.1671-5942.2009.03.013
    [4]
    姜卫平, 刘鸿飞, 刘万科, 等. 西龙池上水库GPS变形监测系统研究及实现[J]. 武汉大学学报(信息科学版), 2012, 37(8): 949–952.

    JIANG Weiping, LIU Hongfei, LIU Wanke, et al. CORS development for Xilongchi dam deformation monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 949–952.
    [5]
    彭伟, 徐俊臣, 杜玉杰, 等. 基于北斗系统的海洋环境监测数据传输系统设计[J]. 海洋技术, 2009, 28(3): 13–15. doi: 10.3969/j.issn.1003-2029.2009.03.004

    PENG Wei, XU Junchen, DU Yujie, et al. Design of marine monitoring data transmitting system based on Beidou satellites system[J]. Ocean Technology, 2009, 28(3): 13–15. doi: 10.3969/j.issn.1003-2029.2009.03.004
    [6]
    丁盼, 席瑞杰, 肖玉钢. 北斗卫星导航系统用于东北地区高精度变形监测性能分析[J]. 测绘通报, 2016(4): 33–37. doi: 10.13474/j.cnki.11-2246.2016.0116

    DING Pan, XI Ruijie, and XIAO Yugang. Performance analysis of high-precision deformation monitoring using Beidou navigation satellite system in Northeast China Region[J]. Bulletin of Surveying and Mapping, 2016(4): 33–37. doi: 10.13474/j.cnki.11-2246.2016.0116
    [7]
    王利, 张勤, 范丽红, 等. 北斗/GPS融合静态相对定位用于高精度地面沉降监测的试验与结果分析[J]. 工程地质学报, 2015, 23(1): 119–125. doi: 10.13544/j.cnki.jeg.2015.01.017

    WANG Li, ZHANG Qin, FAN Lihong, et al. Experiment and results of high precision land subsidence monitoring using fused BDS/GPS data and static relative positioning[J]. Journal of Engineering Geology, 2015, 23(1): 119–125. doi: 10.13544/j.cnki.jeg.2015.01.017
    [8]
    XI Ruijie, CHEN Qusen, MENG Xiaolin, et al. Analysis of bridge deformations using real-time BDS measurements[C]. Proceedings of the 6th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 2017: 532–536. doi: 10.1109/ICCSNT.2017.8343756.
    [9]
    XIONG Chunbao, LU Huali, and ZHU Jinsong. Operational modal analysis of bridge structures with data from GNSS/accelerometer measurements[J]. Sensors, 2017, 17(3): 436. doi: 10.3390/s17030436
    [10]
    XI Ruijie, JIANG Weiping, MENG Xiaolin, et al. Bridge monitoring using BDS-RTK and GPS-RTK techniques[J]. Measurement, 2018, 12: 128–139. doi: 10.1016/j.measurement.2018.02.001
    [11]
    CHEN Yongqi, DING Xiaoli, HUANG Dingfa, et al. A multi-antenna GPS system for local area deformation monitoring[J]. Earth, Planets & Space, 2000, 52(10): 873–876. doi: 10.1186/BF03352298
    [12]
    何秀凤, 贾东振, 刘志平. 基于GPS一机多天线方法的大型桥梁动态变形监测[J]. 河海大学学报(自然科学版), 2011, 39(1): 44–48. doi: 10.3876/j.issn.1000-1980.2011.01.010

    HE Xiufeng, JIA Dongzhen, and LIU Zhiping. Application of GPS multi-antenna method to dynamic deformation monitoring of long-span bridges[J]. Journal of Hohai University (Natural Sciences), 2011, 39(1): 44–48. doi: 10.3876/j.issn.1000-1980.2011.01.010
    [13]
    XIE Feng and LI Quanwen. Highway slope monitoring system based multi-antenna GPS network[J]. Advanced Materials Research, 2011, 261-263: 1151–1155. doi: 10.4028/www.scientific.net/AMR.261-263.1151
    [14]
    刘彦杰, 付庆伟, 倪自强. GPS一机多天线滑坡监测系统的建立和应用[J]. 人民长江, 2013, 44(15): 52–53, 97. doi: 10.3969/j.issn.1001-4179.2013.15.014

    LIU Yanjie, FU Qingwei, and NI Ziqiang. Establishment and application of landslide monitoring system using GPS of single instrument with multi-antennas[J]. Yangtze River, 2013, 44(15): 52–53, 97. doi: 10.3969/j.issn.1001-4179.2013.15.014
    [15]
    赵西安, 樊鹏昊, 樊英姿. GNSS一机多天线远程监测系统的研发[J]. 测绘通报, 2015(11): 4–7, 101. doi: 10.13474/j.cnki.11-2246.2015.0333

    ZHAO Xi’an, FAN Penghao, and FAN Yingzi. Developing the remote monitoring system based on GNSS multi-antenna[J]. Bulletin of Surveying and Mapping, 2015(11): 4–7, 101. doi: 10.13474/j.cnki.11-2246.2015.0333
    [16]
    ZHANG Yamei, ZHANG Fangzheng, and PAN Shilong. Optical single sideband polarization modulation for radio-over-fiber system and microwave photonic signal processing[J]. Photonics Research, 2014, 2(4): B80–B85. doi: 10.1364/PRJ.2.000B80
    [17]
    KARIM A M, STAFFORD S J, and BAKER R B. Global positioning system over fiber for buoyant cable antennas[J]. Johns Hopkins APL Technical Digest, 2012, 30(4): 309–320.
    [18]
    OLIVEIRA J M B, PESSOA L M, SALGADO H M, et al. Experimental evaluation of a differential GPS-over-fiber system for aircraft attitude determination[C]. Proceedings of 2013 IEEE Avionics, Fiber-Optics and Photonics Technology Conference (AVFOP), San Diego, CA, USA, 2013: 75–76. doi: 10.1109/AVFOP.2013.6661586.
    [19]
    PESSOA L M, OLIVEIRA J M B, COELHO D, et al. Transmission of differential GPS signals over fiber for aircraft attitude determination[C]. IEEE Avionics, Fiber-Optics and Photonics Digest CD, Cocoa Beach, FL, USA, 2012: 80–81. doi: 10.1109/AVFOP.2012.6344032.
    [20]
    宋希希, 郭荣辉, 周永刚, 等. 光载GPS一机多天线系统的实验验证[J]. 数据采集与处理, 2014, 29(6): 957–963. doi: 10.3969/j.issn.1004-9037.2014.06.013

    SONG Xixi, GUO Ronghui, and ZHOU Yonggang, et al. Experimental demonstration of GPS-over-fiber multi-antenna receiver system[J]. Journal of Data Acquisition and Processing, 2014, 29(6): 957–963. doi: 10.3969/j.issn.1004-9037.2014.06.013
    [21]
    MACIAS-VALADEZ D, SANTERRE R, LAROCHELLE S, et al. Improving vertical GPS precision with a GPS-over-fiber architecture and real-time relative delay calibration[J]. GPS Solutions, 2012, 16(4): 449–462. doi: 10.1007/s10291-011-0244-6
    [22]
    CLIVATI C, CAPPELLINI G, LIVI L F, et al. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination[J]. Optics Express, 2016, 24(11): 11865–11875. doi: 10.1364/OE.24.011865
    [23]
    LI Hongnan, REN Liang, JIA Ziguang, et al. State-of-the-art in structural health monitoring of large and complex civil infrastructures[J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 3–16. doi: 10.1007/s13349-015-0108-9
    [24]
    SMALL E E, ROESLER C J, and LARSON K M. Vegetation response to the 2012—2014 california drought from GPS and optical measurements[J]. Remote Sensing, 2018, 10(4): 630. doi: 10.3390/rs10040630
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2195) PDF downloads(167) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint