Citation: | DUAN Xiaofei, LIU Zhiwen, and XU Yougen. Robust quaternion-valued wideband adaptive beamforming[J]. Journal of Radars, 2019, 8(1): 117–124. doi: 10.12000/JR18083 |
[1] |
GOU X M, XU Y G, LIU Z W, et al. Quaternion-capon beamformer using crossed-dipole arrays[C]. Proceedings of the 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, China, 2011: 34–37. doi: 10.1109/MAPE.2011.6156140.
|
[2] |
TAO J W and CHANG W X. The MVDR beamformer based on hypercomplex processes[C]. Proceedings of 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 2012: 273–277. doi: 10.1109/ICCSEE.2012.430.
|
[3] |
TAO J W and CHANG W X. A novel combined beamformer based on hypercomplex processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1276–1289. doi: 10.1109/TAES.2013.6494413
|
[4] |
ZHANG X R, LIU W, XU Y G, et al. Quaternion-valued robust adaptive beamformer for electromagnetic vector-sensor arrays with worst-case constraint[J]. Signal Processing, 2014, 104: 274–283. doi: 10.1016/j.sigpro.2014.04.006
|
[5] |
LIU Z W, WANG Y X, ZHANG X R, et al. Spatially smoothed Quaternion-Capon beamforming in the presence of coherent interferences[J]. Journal of Beijing Institute of Technology, 2016, 25(2): 225–230. doi: 10.15918/j.jbit1004-0579.201625.0210
|
[6] |
TOOK C C and MANDIC D P. A quaternion widely linear adaptive filter[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4427–4431. doi: 10.1109/TSP.2010.2048323
|
[7] |
ZHANG X R, LIU Z W, FAN Z Y, et al. Quaternion-valued robust adaptive beamformer based on widely linear processing[C]. Proceedings of the 19th International Conference on Digital Signal Processing, Hong Kong, China, 2014: 719–724. doi: 10.1109/ICDSP.2014.6900758.
|
[8] |
刘志文, 王荔, 徐友根. 四元数域对合增广宽线性自适应波束形成[J]. 电子与信息学报, 2017, 39(7): 1525–1531. doi: 10.11999/JEIT160988
LIU Zhi-wen, WANG Li, and XU You-gen. Quaternion-valued widely linear adaptive beamforming via involution augmentation[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1525–1531. doi: 10.11999/JEIT160988
|
[9] |
FROST O L. An algorithm for linearly constrained adaptive array processing[J]. Proceedings of the IEEE, 1972, 60(8): 926–935. doi: 10.1109/PROC.1972.8817
|
[10] |
MENG E and CANTONI A. Derivative constraints for broad-band element space antenna array processors[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(6): 1378–1393. doi: 10.1109/TASSP.1983.1164219
|
[11] |
BUCKLEY K M. Spatial/spectral filtering with linearly constrained minimum variance beamformers[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3): 249–266. doi: 10.1109/TASSP.1987.1165142
|
[12] |
CHEVALIER P and BLIN A. Widely linear MVDR beamformers for the reception of an unknown signal corrupted by noncircular interferences[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5323–5336. doi: 10.1109/TSP.2007.899394
|
[13] |
WANG G H, LIE J P, and SEE C M S. A robust approach to optimum widely linear MVDR beamformer[C]. Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 2593–2596. doi: 10.1109/ICASSP.2012.6288447.
|
[14] |
XU Y G, MA J Y, LIU Z W, et al. A class of diagonally loaded robust Capon beamformers for noncircular signals of interest[J]. Signal Processing, 2014, 94: 670–680. doi: 10.1016/j.sigpro.2013.07.013
|
[15] |
CHEVALIER P, DELMAS J P, and OUKACI A. Optimal widely linear MVDR beamforming for noncircular signals[C]. Proceedings of 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 3573–3576. doi: 10.1109/ICASSP.2009.4960398.
|
[16] |
HAMILTON W R. On a new species of imaginary quantities connected with a theory of quaternions[J]. Proceedings of the Royal Irish Academy, 1843, 2: 424–434.
|
[17] |
WARD J P. Quaternions and Cayley Numbers: Algebra and Applications[M]. Dordrecht: Kluwer, 1997: 54–102. doi: 10.1007/978-94-011-5768-1.
|
[18] |
ELL T A and SANGWINE S J. Quaternion involutions and anti-involutions[J]. Computers & Mathematics with Applications, 2007, 53(1): 137–143. doi: 10.1016/j.camwa.2006.10.029
|
[19] |
JIANG M D, LI Y, and LIU W. Properties of a general quaternion-valued gradient operator and its applications to signal processing[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(2): 83–95. doi: 10.1631/FITEE.1500334
|