WANG Yuqi, SUN Guangcai, YANG Jun, et al. Passive localization algorithm for radiation source based on long synthetic aperture[J]. Journal of Radars, 2020, 9(1): 185–194. doi: 10.12000/JR19080
Citation: Li Fang-fang, Hu Dong-hui, Ding Chi-biao, Qiu Xiao-lan. Antiparallel Aspects of Airborne Dual-antenna InSAR Data Processing and Analysis[J]. Journal of Radars, 2015, 4(1): 38-48. doi: 10.12000/JR14135

Antiparallel Aspects of Airborne Dual-antenna InSAR Data Processing and Analysis

DOI: 10.12000/JR14135
  • Received Date: 2014-11-20
  • Rev Recd Date: 2014-12-18
  • Publish Date: 2015-02-28
  • Interferometric Synthetic Aperture Radar (InSAR) is a powerful technique for precise topographic mapping. However, owing to the side-looking SAR imaging geometry, geometry distortions appear in mountainous scenarios. Because of phase discontinuities or the absence of a valid phase, it is difficult to recover accurate DEM in such areas with single-aspect InSAR data. Fusion of two or more different aspects of InSAR data can deal with this problem in practice. Experiments using two antiparallel aspects of airborne InSAR data are carried out based on this idea. To decrease the processing error in single-aspect data and fuse them seamlessly, a MOtion COmpensation (MOCO) method using iterative DEM is used to reduce the MOCO error. Besides, phase-unwrapping methods based on terrain characteristics are proposed to avoid phase-unwrapping error owing to phase discontinuities in areas of shadow and layover. Experimental results verify the effectiveness of the processing methods.

     

  • [1]
    Rosen P A, Hensley S, Joughin I R, et al.. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 331-382.
    [2]
    Eineder M and Holzner J. Interferometric DEMs in Alpine terrain-limits and options for ERS and SRTM[C]. Proceedings of International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii USA, 2000: 3210-3212.
    [3]
    Eineder M. Interferometric DEM reconstruction of Alpine areas-experiences with SRTM data and improved strategies for future missions[OL]. www.eproceedings.org, 2005.
    [4]
    Schmitt M and Stilla U. Utilization of airborne multi-aspect InSAR data for the generation of urban ortho-images[C]. International Geoscience and Remote Sensing Symposium, 2010: 3937-3940.
    [5]
    Lachaise M, Balss U, Fritz T, et al.. The dual-baseline interferometric processing chain for the TanDEM-X mission[C]. Proceedings of International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 5562-5565.
    [6]
    Gruber A, Wessel B, Huber M, et al.. The approach for combing DEM acquisitions for the TanDEM-X DEM mosaic[C]. Proceedings of International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 2970-2973.
    [7]
    Fornaro G. Trajectory deviations in airborne SAR: analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997-1009.
    [8]
    Reigber A, Alivizatios E, Potsis A, et al.. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(3): 301-310.
    [9]
    李芳芳, 仇晓兰, 孟大地, 等. 机载双天线InSAR 运动补偿误 差的影响分析[J]. 电子与信息学报, 2013, 35(3): 559-567. Li F F, Qiu X L, Meng D D, et al.. Effects of motion compensation errors on performance of airborne dual-antenna InSAR[J]. Journal of Electronics Information Technology, 2013, 35(3): 559-567.
    [10]
    王健, 向茂生, 李绍恩. 一种基于InSAR 相干系数的SAR 阴 影提取方法[J]. 武汉大学学报(信息科学版), 2005, 30(12): 1063-1066. Wang J, Xiang M S, and Li S E. A method for extracting the SAR shadow form InSAR coherence[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1063-1066.
    [11]
    索志勇, 李真芳, 吴建新, 等. 干涉SAR 阴影提取及相位补偿方法[J]. 数据采集与处理, 2009, 24(3): 264-269. Suo Z Y, Li Z F, Wu J X, et al.. Method for shadow detection and compensation on interferometric synthetic aperture radar[J]. Journal of Data Acquisition Processing, 2009, 24(3): 264-269.
    [12]
    Gini F, Lombardini F, and Montanari M. Layover solution in multibaseline SAR interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1344-1356.
    [13]
    Baselice F, Budillon A, Ferraioli G, et al.. Joint SAR imaging and DEM reconstruction from multichannel layover-affected SAR data[C]. Proceedings of International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 25-28.
    [14]
    Baseline F, Ferraioli G, and Pascazio V. DEM reconstruction in layover areas from SAR and auxiliary input data[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 253-257.
    [15]
    Li Hai, Li Zhen-fang, Liao Gui-sheng, et al.. An estimation method for InSAR interferometric phase combined with image auto-coregistration[J]. Science in China, Series F: Information Sciences, 2006, 49(3): 386-396.
    [16]
    Trouv E, Nicolas J M, and Maitre H. Improving phase unwrapping techniques by the use of local frequency estimates[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1963-1972.
  • Relative Articles

    [1]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [2]DONG Shuxian, WU Yaojun, FANG Wen, QUAN Yinghui. Anti-interrupted Sampling Repeater Jamming Method Based on Frequency-agile Radar Joint Fuzzy C-means[J]. Journal of Radars, 2022, 11(2): 289-300. doi: 10.12000/JR21205
    [3]YU Longlong, FENG Dong, WANG Jian, HUANG Xiaotao. Estimation of the Minimum Number of Acquisitions for Coprime Tomographic Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(4): 618-636. doi: 10.12000/JR22047
    [4]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [5]PAN Jie, WANG Shuai, LI Daojing, LU Xiaochun. High-resolution Wide-swath SAR Moving Target Imaging Technology Based on Distributed Compressed Sensing[J]. Journal of Radars, 2020, 9(1): 166-173. doi: 10.12000/JR19060
    [6]XIE Jinwei, LI Zhenfang, WANG Fan, WANG Zhibin. SAR Tomography Imaging for Buildings Using an Inconsistency Criterion for Amplitude and Phase[J]. Journal of Radars, 2020, 9(1): 154-165. doi: 10.12000/JR19062
    [7]DING Chibiao, QIU Xiaolan, XU Feng, LIANG Xingdong, JIAO Zekun, ZHANG Fubo. Synthetic Aperture Radar Three-dimensional Imaging——From TomoSAR and Array InSAR to Microwave Vision(in English)[J]. Journal of Radars, 2019, 8(6): 693-709. doi: 10.12000/JR19090
    [8]Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [9]Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm[J]. Journal of Radars, 2017, 6(1): 25-33. doi: 10.12000/JR16027
    [10]Chen Ying, Zhong Fei, Guo Shuxu. Blind Compressed Sensing Parameter Estimation of Non-cooperative Frequency Hopping Signal[J]. Journal of Radars, 2016, 5(5): 531-537. doi: 10.12000/JR15106
    [11]Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159
    [12]Zhong Jinrong, Wen Gongjian. Compressive Sensing for Radar Target Signal Recovery Based on Block Sparse Bayesian Learning(in English)[J]. Journal of Radars, 2016, 5(1): 99-108. doi: 10.12000/JR15056
    [13]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [14]Xiao Peng, Wu Youming, Yu Ze, Li Chunsheng. Azimuth Ambiguity Suppression in SAR Images Based on Compressive Sensing Recovery Algorithm[J]. Journal of Radars, 2016, 5(1): 35-41. doi: 10.12000/JR16004
    [15]Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [16]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [17]Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006
    [18]Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, Timo Balz, Zhang Lu. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios[J]. Journal of Radars, 2015, 4(2): 123-129. doi: 10.12000/JR15031
    [19]Zhong Li-hua, Hu Dong-hui, Ding Chi-biao, Zhang Wen-yi. ISAR Sparse Aperture Imaging Algorithm for Large Size Target[J]. Journal of Radars, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033
    [20]Liu Zhen, Wei Xi-zhang, Li Xiang. Novel Method of Unambiguous Moving Target Detection in Pulse-Doppler Radar with Random Pulse Repetition Interval[J]. Journal of Radars, 2012, 1(1): 28-35. doi: 10.3724/SP.J.1300.2013.10063
  • Cited by

    Periodical cited type(3)

    1. 黄晓云. 基于光场重构的室内空间布局三维成像方法研究. 激光杂志. 2024(04): 228-232 .
    2. Xiaolan Qiu,Zekun Jiao,Zhe Zhang,Qiancheng Yan,Chibiao Ding. Advances and prospects in SAR microwave vision three-dimensional imaging. National Science Open. 2024(05): 53-83 .
    3. Xinyuan Liu,Shunjun Wei,Wei Pu,Xiang Cai,Yanbo Wen,Shisheng Guo,Lingjiang Kong,Xiaoling Zhang. RM-CSTV: An effective high-resolution method of non-line-of-sight millimeter-wave radar 3-D imaging. National Science Open. 2024(05): 36-52 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.2 %FULLTEXT: 31.2 %META: 64.6 %META: 64.6 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %其他: 0.8 %其他: 0.8 %Canada: 0.1 %Canada: 0.1 %China: 0.5 %China: 0.5 %Hong Kong, China: 0.0 %Hong Kong, China: 0.0 %India: 0.0 %India: 0.0 %Taiwan, China: 0.4 %Taiwan, China: 0.4 %United States: 0.1 %United States: 0.1 %[]: 0.6 %[]: 0.6 %三亚: 0.0 %三亚: 0.0 %上海: 1.9 %上海: 1.9 %东莞: 0.1 %东莞: 0.1 %中卫: 0.0 %中卫: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %九江: 0.1 %九江: 0.1 %亳州: 0.1 %亳州: 0.1 %仙桃: 0.0 %仙桃: 0.0 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %信阳: 0.1 %信阳: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.0 %兰辛: 0.0 %内江: 0.0 %内江: 0.0 %包头: 0.0 %包头: 0.0 %北京: 17.1 %北京: 17.1 %北京市: 0.2 %北京市: 0.2 %十堰: 0.1 %十堰: 0.1 %南京: 4.5 %南京: 4.5 %南京市: 0.1 %南京市: 0.1 %南充: 0.0 %南充: 0.0 %南宁: 0.0 %南宁: 0.0 %南昌: 0.1 %南昌: 0.1 %南阳: 0.0 %南阳: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.2 %台州: 0.2 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.6 %合肥: 0.6 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.0 %唐山: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %塞雷: 0.1 %塞雷: 0.1 %大理: 0.0 %大理: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.0 %太原: 0.0 %娄底: 0.0 %娄底: 0.0 %宁夏回族自治区中卫: 0.0 %宁夏回族自治区中卫: 0.0 %安康: 0.0 %安康: 0.0 %安阳: 0.0 %安阳: 0.0 %宜宾: 0.0 %宜宾: 0.0 %宜昌: 0.1 %宜昌: 0.1 %宝鸡: 0.2 %宝鸡: 0.2 %宣城: 0.1 %宣城: 0.1 %宿州: 0.0 %宿州: 0.0 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %广安: 0.0 %广安: 0.0 %广州: 0.4 %广州: 0.4 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.0 %张家口市: 0.0 %张家界: 0.0 %张家界: 0.0 %徐州: 0.2 %徐州: 0.2 %惠州: 0.0 %惠州: 0.0 %成都: 0.7 %成都: 0.7 %成都市: 0.1 %成都市: 0.1 %扬州: 0.3 %扬州: 0.3 %扬州市: 0.0 %扬州市: 0.0 %承德: 0.0 %承德: 0.0 %抚州: 0.0 %抚州: 0.0 %新乡: 0.0 %新乡: 0.0 %无锡: 0.2 %无锡: 0.2 %日照: 0.0 %日照: 0.0 %昆明: 0.2 %昆明: 0.2 %昌吉: 0.0 %昌吉: 0.0 %晋城: 0.0 %晋城: 0.0 %景德镇: 0.0 %景德镇: 0.0 %杭州: 1.0 %杭州: 1.0 %杭州市: 0.0 %杭州市: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %梅州: 0.0 %梅州: 0.0 %武汉: 0.9 %武汉: 0.9 %池州: 0.0 %池州: 0.0 %沈阳: 0.1 %沈阳: 0.1 %沙特阿拉伯: 0.0 %沙特阿拉伯: 0.0 %沙田: 0.0 %沙田: 0.0 %泉州: 0.0 %泉州: 0.0 %泰州: 0.1 %泰州: 0.1 %洛杉矶: 0.0 %洛杉矶: 0.0 %济南: 0.2 %济南: 0.2 %海口: 0.2 %海口: 0.2 %海口市: 0.0 %海口市: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.5 %深圳: 0.5 %深圳市: 0.0 %深圳市: 0.0 %温州: 0.0 %温州: 0.0 %渭南: 0.1 %渭南: 0.1 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %湛江: 0.0 %湛江: 0.0 %滁州: 0.1 %滁州: 0.1 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.1 %烟台: 0.1 %玉溪: 0.0 %玉溪: 0.0 %白银: 0.0 %白银: 0.0 %益阳: 0.0 %益阳: 0.0 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %绍兴: 0.0 %绍兴: 0.0 %绵阳: 0.1 %绵阳: 0.1 %美国: 0.0 %美国: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 22.0 %芒廷维尤: 22.0 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.3 %苏州: 0.3 %莆田: 0.0 %莆田: 0.0 %营口: 0.0 %营口: 0.0 %萨斯卡通: 0.0 %萨斯卡通: 0.0 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.1 %衢州: 0.1 %西宁: 28.1 %西宁: 28.1 %西安: 2.0 %西安: 2.0 %西安市鄠邑区: 0.0 %西安市鄠邑区: 0.0 %西隆: 0.1 %西隆: 0.1 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.3 %运城: 0.3 %遂宁: 0.0 %遂宁: 0.0 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.6 %郑州: 0.6 %重庆: 0.2 %重庆: 0.2 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.6 %长沙: 0.6 %长沙市: 0.0 %长沙市: 0.0 %长治: 0.2 %长治: 0.2 %阳江: 0.0 %阳江: 0.0 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.4 %青岛: 0.4 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %驻马店: 0.0 %驻马店: 0.0 %黄冈: 0.0 %黄冈: 0.0 %黄石: 0.0 %黄石: 0.0 %其他其他CanadaChinaHong Kong, ChinaIndiaTaiwan, ChinaUnited States[]三亚上海东莞中卫临汾丹东九江亳州仙桃伦敦佛山保定信阳六安兰州兰辛内江包头北京北京市十堰南京南京市南充南宁南昌南阳厦门台北台州台湾省合肥吉林呼和浩特哈尔滨唐山嘉兴塞雷大理大连天津太原娄底宁夏回族自治区中卫安康安阳宜宾宜昌宝鸡宣城宿州巴彦淖尔常州广安广州廊坊延安开封张家口张家口市张家界徐州惠州成都成都市扬州扬州市承德抚州新乡无锡日照昆明昌吉晋城景德镇杭州杭州市格兰特县桂林梅州武汉池州沈阳沙特阿拉伯沙田泉州泰州洛杉矶济南海口海口市淮南淮安深圳深圳市温州渭南湖州湘潭湛江滁州漯河潍坊烟台玉溪白银益阳盐城石家庄福州秦皇岛绍兴绵阳美国美国伊利诺斯芝加哥舟山芒廷维尤芜湖芝加哥苏州莆田营口萨斯卡通衡水衡阳衢州西宁西安西安市鄠邑区西隆贵阳赣州运城遂宁邢台邯郸郑州重庆金华镇江长春长沙长沙市长治阳江阳泉青岛香港香港特别行政区马鞍山驻马店黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2786) PDF downloads(1489) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint