Citation: | WEI Ning, LI Minglei, CHEN Guangyong, et al. Research on aircraft docking guidance localization based on LiDAR point cloud completion[J]. Journal of Radars, in press. doi: 10.12000/JR25002 |
[1] |
韩万鹏,蒙文,李云霞,等. 机场泊位引导系统的发展现状及关键技术分析[J]. 激光与红外, 2012, 42(3): 244–249. doi: 10.3969/j.issn.1001-5078.2012.03.002.
HAN Wanpeng, MENG Wen, LI Yunxia, et al. Development status and key technical analysis of airport docking guide system[J]. Laser & Infrared, 2012, 42(3): 244–249. doi: 10.3969/j.issn.1001-5078.2012.03.002.
|
[2] |
任宁,徐乃付.泊位引导系统与A-SMGCS系统运行方式探究[C] 中国计算机用户协会网络应用分会2021年第二十五届网络新技术与应用年会论文集, 北京. 2021:4. doi: 10.26914/c.cnkihy.2021.047813.
REN Ning and XU Naifu. Study of operation mode of visual docking guidance system and A-SMGCS[C]. In Proceedings of the 25th Annual Conference on Network New Technologies and Applications of the China Computer User Association Network Application Branch (p. 4). Beijing, China, 2021: 4. doi: 10.26914/c.cnkihy.2021.047813.
|
[3] |
张积洪,李兴旺. 双目激光泊位引导系统[J]. 机械设计, 2015, 32(11): 88–91. doi: 10.13841/j.cnki.jxsj.2015.11.018.
ZHANG Jihong and LI Xingwang. Binocular laser docking guidance system[J]. Machine Design, 2015, 32(11): 88–91. doi: 10.13841/j.cnki.jxsj.2015.11.018.
|
[4] |
魏红波. 组合精密进近着陆技术研究[J]. 现代导航, 2017, 8(01): 5–8. doi: 10.3969/j.issn.1674-7976.2017.01.002.
WEI Hongbo. Technology Research on Integrated Precise Approach and Landing[J]. Modern Navigation, 2017, 8(01): 5–8. doi: 10.3969/j.issn.1674-7976.2017.01.002.
|
[5] |
南晓虎,丁雷. 深度学习的典型目标检测算法综述[J]. 计算机应用研究, 2020, 37(S2): 15–21.
NAN Xiaohu and DING Lei. Review of typical target detection algorithms for deep learning[J]. Application Research of Computers, 2020, 37(S2): 15–21.
|
[6] |
MITRA N J, PAULY M, WAND M, et al. Symmetry in 3d geometry: Extraction and applications[J]. Computer Graphics Forum.2013, 32(6): 1–23. doi: 10.1111/cgf.12010.
|
[7] |
SARKAR K, VARANASI K, STRICKER D. Learning quadrangulated patches for 3D shape parameterization and completion[C]. 2017 International Conference on 3D Vision (3DV), Qingdao, China,2017, 383-392. doi: 10.1109/3DV.2017.00051.
|
[8] |
SUNG M, KIM V G, ANGST R, et al. Data-driven structural priors for shape completion[J]. ACM Transactions on Graphics, 2015, 34(6): 175. doi: 10.1145/2816795.2818094.
|
[9] |
QI C R, SU HAO, MO KAICHUN, et al.PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[J]. IEEE, 2017.DOI: 10.1109/CVPR.2017.16.
|
[10] |
QI C R, YI LI, SU HAO, et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[J]. 2017. DOI: 10.48550/arXiv.1706.02413.
|
[11] |
YUAN WENTAO, KHOT T, HELD D, et al. Pcn: Point completion network[C]. 2018 international conference on 3D vision (3DV). Verona, Italy, 2018: 728–737. doi: 10.1109/3DV.2018.00088. IEEE, 2018:728–737. doi: 10.1109/3DV.2018.00088.
|
[12] |
CHANG A X, FUNKHOUSER T, GUIBAS L, et al. Shapenet: An information-rich 3d model repository [EB/OL]. https://arxiv.org/abs/1512.03012, 2015.
|
[13] |
HUANG Zitian, YU Yikuan, XU Jiawen, et al. Pf-Net: Point fractal network for 3D point cloud completion[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 7659–7667. doi: 10.1109/CVPR42600.2020.00768.
|
[14] |
PROKOP M, SHAIKH S A and KIM K S. Low overlapping point cloud registration using line features detection[J]. Remote Sensing, 2019, 12(1): 61. doi: 10.3390/rs12010061.
|
[15] |
BESL P J and MCKAY N D. Method for registration of 3-D shapes[C]. SPIE 1611, Sensor Fusion IV: Control Paradigms and Data Structures, Boston, USA, 1992: 586–606. doi: 10.1117/12.57955.
|
[16] |
HAN Jianda, YIN Peng, HE Yuqing, et al. Enhanced ICP for the registration of large-scale 3D environment models: An experimental study[J]. Sensors, 2016, 16(2): 228. doi: 10.3390/s16020228.
|
[17] |
李仁忠, 杨曼, 田瑜,等. 基于ISS特征点结合改进ICP的点云配准算法[J]. 激光与光电子学进展, 2017, 54(11): 111503. doi: 10.3788/LOP54.111503.
LI Renzhong, YANG Man, TIAN Yu, et al. Point cloud registration algorithm based on the ISS feature points combined with improved ICP algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111503. doi: 10.3788/LOP54.111503.
|
[18] |
BIBER P . The normal distributions transform: a new approach to laser scan matching[J]. Proc.of IEEE /RSJ Intl Conf.on Intelligent Robots & Systems, 2003. doi: 10.1109/IROS.2003.1249285.
|
[19] |
杨宜林,李积英,王燕,等. 基于NDT和特征点检测的点云配准算法研究[J]. 激光与光电子学进展, 2022, 59(8): 0810016. doi: 10.3788/LOP202259.0810016.
YANG Yilin, LI Jiying, WANG Yan, et al. Point cloud registration algorithm based on NDT and feature point detection[J]. Laser & Optoelectronics Progress, 2022, 59(8): 0810016. doi: 10.3788/LOP202259.0810016.
|
[20] |
荆路, 武斌,李先帅. 基于SAC-IA和NDT融合的点云配准方法[J]. 大地测量与地球动力学, 2021, 41(4): 378–381. doi: 10.14075/j.jgg.2021.04.010.
JING Lu, WU Bin and LI Xianshuai. Point cloud registration method based on SAC-IA and NDT fusion[J]. Journal of Geodesy and Geodynamics, 2021, 41(4): 378–381. doi: 10.14075/j.jgg.2021.04.010.
|
[21] |
FEI Ben, YANG Weidong, CHEN Wenming, et al. Comprehensive review of deep learning-based 3D point cloud completion processing and analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 22862–22883. doi: 10.1109/TITS.2022.3195555.
|
[22] |
严璐, 顾昕. 激光雷达三维点云目标补全算法[J]. 电子技术与软件工程, 2022(5): 101–104. doi: 10.20109/j.cnki.etse.2022.05.025.
YAN Lu and GU Xin. Deep learning on radar centric 3D object completion[J]. Electronic Technology & Software Engineering, 2022(5): 101–104. doi: 10.20109/j.cnki.etse.2022.05.025.
|
[23] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[24] |
GUO Menghao, CAI Junxiong, LIU Zhengning, et al. PCT: Point cloud transformer[J]. Computational Visual Media, 2021, 7: 187–199. doi: 10.1007/s41095-021-0229-5.
|
[25] |
PAN Xuran, XIA Zhuofan, SONG Shiji, et al. 3D object detection with pointformer[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 7459–7468. doi: 10.1109/CVPR46437.2021.00738.
|
[26] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[C]//International Conference on Learning Representations.2021.
|
[27] |
WANG Yue, SUN Yongbin, LIU Ziwei, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics (TOG), 2019, 38(5): 146. doi: 10.1145/3326362.
|
[28] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[J]. arXiv, 2017. doi: 10.48550/arXiv.1706.03762.
|
[29] |
YANG Yaoqing, FENG Chen, SHEN Yiru, et al. FoldingNet: Point cloud auto-encoder via deep grid deformation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 206–215. doi: 10.1109/CVPR.2018.00029.
|
[30] |
李文博, 王琦, 高尚. 基于深度学习的红外小目标检测算法综述[J]. 激光与红外, 2023, 53(10): 1476–1484. doi: 10.3969/j.issn.1001-5078.2023.10.003.
LI Wenbo, WANG Qi, GAO Shang. A review of infrared small target detection algorithms based on deep learning[J]. Laser & Infrared, 2023, 53(10): 1476–1484. doi: 10.3969/j.issn.1001-5078.2023.10.003.
|
[31] |
FISCHLER M A and BOLLES R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Comm. of the ACM, 1981, 24: 381–395.
|
[32] |
LIU Jiang, ZHU Jiwen, YANG Jinling, et al. Three-dimensional point cloud registration based on ICP algorithm employing K-D tree optimization[C]. SPIE 10033, Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengu, China, 2016: 100334D. doi: 10.1117/12.2248362.
|