LI Yuxi, ZHU Ruichao, SUI Sai, et al. Dynamic electromagnetic control technology and its application based on metasurface[J]. Journal of Radars, in press. doi: 10.12000/JR24259
Citation: LI Yuxi, ZHU Ruichao, SUI Sai, et al. Dynamic electromagnetic control technology and its application based on metasurface[J]. Journal of Radars, in press. doi: 10.12000/JR24259

Dynamic Electromagnetic Control Technology and Its Application Based on Metasurface

DOI: 10.12000/JR24259 CSTR: 32380.14.JR24259
Funds:  National Key Research and Development Program of China (2022YFB3806200), National Natural Science Foundation of China (62201609, 62401614, 62401617)
More Information
  • Electromagnetic (EM) metasurfaces are a novel type of artificial EM material exhibiting great advantages for wireless communication and signal processing. By introducing external excitation (mechanical, thermal, electrical, optical, and magnetic excitations), the EM metasurface realizes a more flexible dynamic control of the EM response. On the basis of the dynamic control method, the EM metasurface can accurately control the phase, amplitude, polarization mode, propagation mode, and other characteristics of EM waves to realize wavefront control in different application scenarios. In this paper, we first summarize the research progress of dynamic control technology for EM metasurfaces. Then, the research status of EM metasurfaces in the fields of holographic imaging, polarization conversion, metalensing, beam steering, and intelligent systems based on the application scenarios is discussed. Finally, the development modes of EM metasurfaces and the development trends of intelligent control in the future are summarized and explored.

     

  • [1]
    ZHANG Xinge, TANG Wenxuan, JIANG Weixiang, et al. Light-controllable digital coding metasurfaces[J]. Advanced Science, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028.
    [2]
    JIANG Shan, LIU Xuejun, LIU Jianpeng, et al. Flexible metamaterial electronics[J]. Advanced Materials, 2022, 34(52): 2200070. doi: 10.1002/adma.202200070.
    [3]
    CHEN Tian, PAULY M, and REIS P M. A reprogrammable mechanical metamaterial with stable memory[J]. Nature, 2021, 589(7842): 386–390. doi: 10.1038/s41586-020-03123-5.
    [4]
    YU Peng, BESTEIRO L V, HUANG Yongjun, et al. Broadband metamaterial absorbers[J]. Advanced Optical Materials, 2019, 7(3): 1800995. doi: 10.1002/adom.201800995.
    [5]
    SHEN Suling, LIU Xudong, SHEN Yaochun, et al. Recent advances in the development of materials for terahertz metamaterial sensing[J]. Advanced Optical Materials, 2022, 10(1): 2101008. doi: 10.1002/adom.202101008.
    [6]
    MEI Tie, MENG Zhiqiang, ZHAO Kejie, et al. A mechanical metamaterial with reprogrammable logical functions[J]. Nature Communications, 2021, 12(1): 7234. doi: 10.1038/s41467-021-27608-7.
    [7]
    ZHENG Xiaoyang, ZHANG Xubo, CHEN Tate, et al. Deep learning in mechanical metamaterials: From prediction and generation to inverse design[J]. Advanced Materials, 2023, 35(45): 2302530. doi: 10.1002/adma.202302530.
    [8]
    CUI Tiejun. Microwave metamaterials[J]. National Science Review, 2018, 5(2): 134–136. doi: 10.1093/nsr/nwx133.
    [9]
    WANG Yifan, NIU Jiarong, JIN Xin, et al. Molecularly resonant metamaterials for broad-band electromagnetic stealth[J]. Advanced Science, 2023, 10(19): 2301170. doi: 10.1002/advs.202301170.
    [10]
    KIM J, HAN K, and HAHN J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports, 2017, 7(1): 6740. doi: 10.1038/s41598-017-06749-0.
    [11]
    PADILLA W J and AVERITT R D. Imaging with metamaterials[J]. Nature Reviews Physics, 2022, 4(2): 85–100. doi: 10.1038/s42254-021-00394-3.
    [12]
    WATTS C M, NADELL C C, MONTOYA J, et al. Frequency-division-multiplexed single-pixel imaging with metamaterials[J]. Optica, 2016, 3(2): 133–138. doi: 10.1364/OPTICA.3.000133.
    [13]
    LUO Yong, QIN Kewei, KE Hao, et al. Active metamaterial antenna with beam scanning manipulation based on a digitally modulated array factor method[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1198–1203. doi: 10.1109/TAP.2020.3010941.
    [14]
    PENG Yugui, SHEN Yaxi, GENG Zhiguo, et al. Super-resolution acoustic image montage via a biaxial metamaterial lens[J]. Science Bulletin, 2020, 65(12): 1022–1029. doi: 10.1016/j.scib.2020.03.018.
    [15]
    LEE G Y, HONG J Y, HWANG S, et al. Metasurface eyepiece for augmented reality[J]. Nature Communications, 2018, 9(1): 4562. doi: 10.1038/s41467-018-07011-5.
    [16]
    DAI Xuemei, DONG Fengliang, ZHANG Kun, et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing[J]. ACS Photonics, 2021, 8(8): 2294–2303. doi: 10.1021/acsphotonics.1c00411.
    [17]
    ESFANDIARI M, LALBAKHSH A, SHEHNI P N, et al. Recent and emerging applications of Graphene-based metamaterials in electromagnetics[J]. Materials & Design, 2022, 221: 110920. doi: 10.1016/j.matdes.2022.110920.
    [18]
    DORRAH A H, RUBIN N A, ZAIDI A, et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nature Photonics, 2021, 15(4): 287–296. doi: 10.1038/s41566-020-00750-2.
    [19]
    QIU Tianshuo, SHI Xin, WANG Jiafu, et al. Deep learning: A rapid and efficient route to automatic metasurface design[J]. Advanced Science, 2019, 6(12): 1900128. doi: 10.1002/advs.201900128.
    [20]
    WANG Hailin, ZHANG Yankai, ZHANG Taiyi, et al. Broadband and programmable amplitude-phase-joint-coding information metasurface[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29431–29440. doi: 10.1021/acsami.2c05907.
    [21]
    CUI Tiejun. Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves[J]. Journal of Optics, 2017, 19(8): 084004. doi: 10.1088/2040-8986/aa7009.
    [22]
    ZHAO Ruizhe, HUANG Lingling, and WANG Yongtian. Recent advances in multi-dimensional metasurfaces holographic technologies[J]. PhotoniX, 2020, 1(1): 20. doi: 10.1186/s43074-020-00020-y.
    [23]
    ZAHRA S, MA Liang, WANG Wenjiao, et al. Electromagnetic metasurfaces and reconfigurable metasurfaces: A review[J]. Frontiers in Physics, 2021, 8: 593411. doi: 10.3389/fphy.2020.593411.
    [24]
    LI Jie, ZHENG Chenglong, LI Jitao, et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface[J]. Photonics Research, 2021, 9(10): 1939–1947. doi: 10.1364/PRJ.431019.
    [25]
    HE An, GUO Xuhan, WANG Ting, et al. Ultracompact fiber-to-chip metamaterial edge coupler[J]. ACS Photonics, 2021, 8(11): 3226–3233. doi: 10.1021/acsphotonics.1c00993.
    [26]
    ABDOLRAZZAGHI M, DANESHMAND M, and IYER A K. Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(4): 1843–1855. doi: 10.1109/TMTT.2018.2791942.
    [27]
    HU Jingpei, ZHAO Xiaonan, LIN Yu, et al. All-dielectric metasurface circular dichroism waveplate[J]. Scientific Reports, 2017, 7(1): 41893. doi: 10.1038/srep41893.
    [28]
    BIBBÒ L, KHAN K, LIU Qiang, et al. Tunable narrowband antireflection optical filter with a metasurface[J]. Photonics Research, 2017, 5(5): 500–506. doi: 10.1364/PRJ.5.000500.
    [29]
    YUE Wenjing, GAO Song, LEE S S, et al. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors[J]. Laser & Photonics Reviews, 2017, 11(3): 1600285. doi: 10.1002/lpor.201600285.
    [30]
    TANG Shiwei, LI Xike, PAN Weikang, et al. High-efficiency broadband vortex beam generator based on transmissive metasurface[J]. Optics Express, 2019, 27(4): 4281–4291. doi: 10.1364/OE.27.004281.
    [31]
    ZHANG Liang, GUO Jie, and DING Tongyu. Ultrathin dual-mode vortex beam generator based on anisotropic coding metasurface[J]. Scientific Reports, 2021, 11(1): 5766. doi: 10.1038/s41598-021-85374-4.
    [32]
    HE Xunjun, CHEN Guang, GENG Zhaoxin, et al. On-chip dynamic manipulation of terahertz spoof surface wavefronts with reconfigurable metasurfaces[J]. Optics Express, 2025, 33(4): 7927–7941. doi: 10.1364/OE.542534.
    [33]
    WANG Meng, MA Huifeng, WU Liangwei, et al. Hybrid digital coding metasurface for independent control of propagating surface and spatial waves[J]. Advanced Optical Materials, 2019, 7(13): 1900478. doi: 10.1002/adom.201900478.
    [34]
    CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422.
    [35]
    FENG Rui, RATNI B, YI Jianjia, et al. Versatile metasurface platform for electromagnetic wave tailoring[J]. Photonics Research, 2021, 9(9): 1650–1659. doi: 10.1364/PRJ.428853.
    [36]
    HU Qi, ZHAO Jianmin, CHEN Ke, et al. An intelligent programmable omni-metasurface[J]. Laser & Photonics Reviews, 2022, 16(6): 2100718. doi: 10.1002/lpor.202100718.
    [37]
    ZHANG Xinge, SUN Yalun, HUANG Zhixiang, et al. A review of light-controlled programmable metasurfaces for remote microwave control and hybrid signal processing[J]. Engineering Reports, 2023, 5(9): e12658. doi: 10.1002/eng2.12658.
    [38]
    LI Chong, JIANG Tianxi, HE Qingbo, et al. Smart metasurface shaft for vibration source identification with a single sensor[J]. Journal of Sound and Vibration, 2021, 493: 115836. doi: 10.1016/j.jsv.2020.115836.
    [39]
    ZHANG Shuang. Intelligent metasurfaces: Digitalized, programmable, and intelligent platforms[J]. Light: Science & Applications, 2022, 11(1): 242. doi: 10.1038/s41377-022-00876-8.
    [40]
    JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. In situ customized illusion enabled by global metasurface reconstruction[J]. Advanced Functional Materials, 2022, 32(19): 2109331. doi: 10.1002/adfm.202109331.
    [41]
    PITILAKIS A, TSILIPAKOS O, LIU Fu, et al. A multi-functional reconfigurable metasurface: Electromagnetic design accounting for fabrication aspects[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1440–1454. doi: 10.1109/TAP.2020.3016479.
    [42]
    MA Yihan, LUO Qi, ZHANG Cheng, et al. Deep learning enables multifunctional metasurfaces design with mutual coupling estimation[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(11): 8443–8451. doi: 10.1109/TAP.2024.3443151.
    [43]
    HOSSAIN M A, BAHCECI I, and CETINER B A. Parasitic layer-based radiation pattern reconfigurable antenna for 5G communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6444–6452. doi: 10.1109/TAP.2017.2757962.
    [44]
    JIN Guiping, LI Miaolan, LIU Dan, et al. A simple planar pattern-reconfigurable antenna based on arc dipoles[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1664–1668. doi: 10.1109/LAWP.2018.2862624.
    [45]
    BRONCKERS L A, ROC’H A, and SMOLDERS A B. A new design method for frequency-reconfigurable antennas using multiple tuning components[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7285–7295. doi: 10.1109/TAP.2019.2930204.
    [46]
    IQBAL A, SMIDA A, ABDULRAZAK L F, et al. Low-profile frequency reconfigurable antenna for heterogeneous wireless systems[J]. Electronics, 2019, 8(9): 976. doi: 10.3390/electronics8090976.
    [47]
    REN Jian, ZHOU Zhao, WEI Zhaohui, et al. Radiation pattern and polarization reconfigurable antenna using dielectric liquid[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 8174–8179. doi: 10.1109/TAP.2020.2996811.
    [48]
    NI Chun, CHEN Mingsheng, ZHANG Zhongxiang, et al. Design of frequency- and polarization-reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 78–81. doi: 10.1109/LAWP.2017.2775444.
    [49]
    IQBAL A, SMIDA A, MALLAT N K, et al. Frequency and pattern reconfigurable antenna for emerging wireless communication systems[J]. Electronics, 2019, 8(4): 407. doi: 10.3390/electronics8040407.
    [50]
    CHEN Shulin, QIN Peiyuan, LIN Wei, et al. Pattern-reconfigurable antenna with five switchable beams in elevation plane[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3): 454–457. doi: 10.1109/LAWP.2018.2794990.
    [51]
    CAO Junmei, MA Hongyu, XIE Shuhuan, et al. Highly efficient abnormal reflection via underwater acoustic metagratings[J]. Physical Review Applied, 2024, 21(3): 034015. doi: 10.1103/PhysRevApplied.21.034015.
    [52]
    FANG Xiang, LUO Jie, WU Zhuang, et al. Reconfigurable coding metamaterial for enhancing RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(11): 8854–8861. doi: 10.1109/TAP.2023.3294752.
    [53]
    CAI Ziru, WU Cuo, JIANG Jing, et al. Phase-change metasurface for switchable vector vortex beam generation[J]. Optics Express, 2021, 29(26): 42762–42771. doi: 10.1364/OE.444956.
    [54]
    MA Wei, HOU Maojing, LUO Ruiqi, et al. Topologically-optimized on-chip metamaterials for ultra-short-range light focusing and mode-size conversion[J]. Nanophotonics, 2023, 12(6): 1189–1197. doi: 10.1515/nanoph-2023-0036.
    [55]
    ZHOU Haoyang, ZHANG Sheng, WANG Shunjia, et al. Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves[J]. Advanced Photonics, 2023, 5(2): 026005. doi: 10.1117/1.AP.5.2.026005.
    [56]
    ZHANG Shoujun, CHEN Xieyu, LIU Kuan, et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 2022, 3(1): 7. doi: 10.1186/s43074-022-00053-5.
    [57]
    POGREBNYAKOV A V, BOSSARD J A, TURPIN J P, et al. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material[J]. Optical Materials Express, 2018, 8(8): 2264–2275. doi: 10.1364/OME.8.002264.
    [58]
    REN Mengxin, WU Wei, CAI Wei, et al. Reconfigurable metasurfaces that enable light polarization control by light[J]. Light: Science & Applications, 2017, 6(6): e16254. doi: 10.1038/lsa.2016.254.
    [59]
    KIM S J, KIM I, CHOI S, et al. Reconfigurable all-dielectric Fano metasurfaces for strong full-space intensity modulation of visible light[J]. Nanoscale Horizons, 2020, 5(7): 1088–1095. doi: 10.1039/D0NH00139B.
    [60]
    XU Ziquan, LUO Hao, ZHU Huanzheng, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Letters, 2021, 21(12): 5269–5276. doi: 10.1021/acs.nanolett.1c01396.
    [61]
    CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99.
    [62]
    ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0.
    [63]
    WANG Hailin, MA Huifeng, CHEN Mao, et al. A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves[J]. Advanced Functional Materials, 2021, 31(25): 2100275. doi: 10.1002/adfm.202100275.
    [64]
    HUANG Lingling, ZHANG Shuang, and ZENTGRAF T. Metasurface holography: From fundamentals to applications[J]. Nanophotonics, 2018, 7(6): 1169–1190. doi: 10.1515/nanoph-2017-0118.
    [65]
    RIVENSON Y, ZHANG Yibo, GÜNAYDIN H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 2018, 7(2): 17141. doi: 10.1038/lsa.2017.141.
    [66]
    ZHU Ruichao, WANG Jiafu, FU Xinmin, et al. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 48303–48310. doi: 10.1021/acsami.2c15362.
    [67]
    HAN H, PARK S, PARK H, et al. Low spurious, broadband reflection frequency modulation using an active metasurface[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(4): 359–362. doi: 10.1109/LMWC.2021.3127316.
    [68]
    YANG Heng, HE Yuan, TONG Meisong, et al. A reflection-transmission multifunctional polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 5099–5109. doi: 10.1109/TAP.2024.3400619.
    [69]
    LI Weihan, MA Qian, LIU Che, et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision[J]. Nature Communications, 2023, 14(1): 989. doi: 10.1038/s41467-023-36645-3.
    [70]
    ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135.
    [71]
    DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044.
    [72]
    MA Qian, LIU Che, XIAO Qiang, et al. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 2022, 1(1): R01. doi: 10.3788/PI.2022.R01.
    [73]
    LI Shangyang, LIU Zhouyang, FU Shilei, et al. Intelligent beamforming via physics-inspired neural networks on programmable metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4589–4599. doi: 10.1109/TAP.2022.3140891.
    [74]
    JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. A knowledge-inherited learning for intelligent metasurface design and assembly[J]. Light: Science & Applications, 2023, 12(1): 82. doi: 10.1038/s41377-023-01131-4.
    [75]
    LIU Guodong, HU Wangsheng, HOU Wenying, et al. Indoor positioning and posture recognition of human body applying integrating-type intelligent metasurfaces based sensing system[J]. Advanced Materials Technologies, 2023, 8(22): 2301006. doi: 10.1002/admt.202301006.
    [76]
    CHEN Benwen, WANG Xinru, LI Weili, et al. Electrically addressable integrated intelligent terahertz metasurface[J]. Science Advances, 2022, 8(41): eadd1296. doi: 10.1126/sciadv.add1296.
    [77]
    LI Yuxi, WANG Jiafu, SUI Sai, et al. Simplistic framework of single-pixel-programmable metasurfaces integrated with a capsuled LED array[J]. Photonics Research, 2024, 12(5): 884–894. doi: 10.1364/PRJ.506044.
    [78]
    REN Zhihao, CHANG Yuhua, MA Yiming, et al. Leveraging of MEMS technologies for optical metamaterials applications[J]. Advanced Optical Materials, 2020, 8(3): 1900653. doi: 10.1002/adom.201900653.
    [79]
    CHANG Yuhua, WEI Jingxuan, and LEE C. Metamaterials-from fundamentals and MEMS tuning mechanisms to applications[J]. Nanophotonics, 2020, 9(10): 3049–3070. doi: 10.1515/nanoph-2020-0045.
    [80]
    PITCHAPPA P, HO C P, CONG Longqing, et al. Reconfigurable digital metamaterial for dynamic switching of terahertz anisotropy[J]. Advanced Optical Materials, 2016, 4(3): 391–398. doi: 10.1002/adom.201500588.
    [81]
    PITCHAPPA P, MANJAPPA M, HO C P, et al. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices[J]. Applied Physics Letters, 2016, 108(11): 111102. doi: 10.1063/1.4943974.
    [82]
    YANG Weixu, CHEN Ke, ZHENG Yilin, et al. Angular-adaptive reconfigurable spin-locked metasurface retroreflector[J]. Advanced Science, 2021, 8(21): 2100885. doi: 10.1002/advs.202100885.
    [83]
    XU Ruijia and LIN Yusheng. Flexible and controllable metadevice using self-assembly MEMS actuator[J]. Nano Letters, 2021, 21(7): 3205–3210. doi: 10.1021/acs.nanolett.1c00391.
    [84]
    XU Ruijia, XU Xiaocan, YANG Boru, et al. Actively logical modulation of MEMS-based terahertz metamaterial[J]. Photonics Research, 2021, 9(7): 1409–1415. doi: 10.1364/PRJ.420876.
    [85]
    LALAS A X, KANTARTZIS N V, and TSIBOUKIS T D. Reconfigurable metamaterial components exploiting two-hot-arm electrothermal actuators[J]. Microsystem Technologies, 2015, 21(10): 2097–2107. doi: 10.1007/s00542-015-2407-9.
    [86]
    SARAVANA JOTHI N S and HUNT A. Active mechanical metamaterial with embedded piezoelectric actuation[J]. APL Materials, 2022, 10(9): 091117. doi: 10.1063/5.0101420.
    [87]
    MAVRIDOU M and FERESIDIS A P. Dynamically reconfigurable high impedance and frequency selective metasurfaces using piezoelectric actuators[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5190–5197. doi: 10.1109/TAP.2016.2617372.
    [88]
    DOERGER S R and HARNETT C K. Force-amplified soft electromagnetic actuators[J]. Actuators, 2018, 7(4): 76. doi: 10.3390/act7040076.
    [89]
    ZHOU Shengrui, LIANG Chao, MEI Ziqi, et al. Design and implementation of a flexible electromagnetic actuator for tunable terahertz metamaterials[J]. Micromachines, 2024, 15(2): 219. doi: 10.3390/mi15020219.
    [90]
    MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies[J]. Nature Communications, 2018, 9(1): 4056. doi: 10.1038/s41467-018-06360-5.
    [91]
    DENG Yadong, MENG Chao, THRANE P C V, et al. MEMS-integrated metasurfaces for dynamic linear polarizers[J]. Optica, 2024, 11(3): 326–332. doi: 10.1364/OPTICA.515524.
    [92]
    ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6.
    [93]
    ROY T, ZHANG Shuyan, JUNG I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi: 10.1063/1.5018865.
    [94]
    HAN Zheyi, COLBURN S, MAJUMDAR A, et al. MEMS-actuated metasurface Alvarez lens[J]. Microsystems & Nanoengineering, 2020, 6(1): 79. doi: 10.1038/s41378-020-00190-6.
    [95]
    MENG Chao, THRANE P C V, DING Fei, et al. Dynamic piezoelectric MEMS-based optical metasurfaces[J]. Science Advances, 2021, 7(26): eabg5639. doi: 10.1126/sciadv.abg5639.
    [96]
    LI Jing, FAN Hongjie, YE Han, et al. Design of multifunctional tunable metasurface assisted by elastic substrate[J]. Nanomaterials, 2022, 12(14): 2387. doi: 10.3390/nano12142387.
    [97]
    CHEN Fanqi, LIU Xiaojie, TIAN Yanpei, et al. Mechanically stretchable metamaterial with tunable mid-infrared optical properties[J]. Optics Express, 2021, 29(23): 37368–37375. doi: 10.1364/OE.439767.
    [98]
    EE H S and AGARWAL R. et al. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818–2823. doi: 10.1021/acs.nanolett.6b00618.
    [99]
    MALEK S C, EE H S, and AGARWAL R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6): 3641–3645. doi: 10.1021/acs.nanolett.7b00807.
    [100]
    ZHANG Chen, JING Jixiang, WU Yunkai, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418–1426. doi: 10.1021/acsnano.9b08228.
    [101]
    FAN Xuanqian, LI Yuhang, CHEN Sihong, et al. Mechanical terahertz modulation by skin-like ultrathin stretchable metasurface[J]. Small, 2020, 16(37): 2002484. doi: 10.1002/smll.202002484.
    [102]
    XU Zefeng and LIN Yusheng. A stretchable terahertz parabolic-shaped metamaterial[J]. Advanced Optical Materials, 2019, 7(19): 1900379. doi: 10.1002/adom.201900379.
    [103]
    LI Binghui, SHI Lintao, and LIN Yusheng. Stretchable and tunable quartered split-ring resonator (QSRR) using terahertz metamaterial[J]. Optics & Laser Technology, 2024, 174: 110692. doi: 10.1016/j.optlastec.2024.110692.
    [104]
    ZHOU Yunlei, WANG Shaolei, YIN Junyi, et al. Flexible metasurfaces for multifunctional interfaces[J]. ACS Nano, 2024, 18(4): 2685–2707. doi: 10.1021/acsnano.3c09310.
    [105]
    XU Ruijia and LIN Yusheng. Actively MEMS-based tunable metamaterials for advanced and emerging applications[J]. Electronics, 2022, 11(2): 243. doi: 10.3390/electronics11020243.
    [106]
    DAS B, YUN H S, PARK N, et al. A transformative metasurface based on zerogap embedded template[J]. Advanced Optical Materials, 2021, 9(11): 2002164. doi: 10.1002/adom.202002164.
    [107]
    OVERVELDE J T B, DE JONG T A, SHEVCHENKO Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications, 2016, 7(1): 10929. doi: 10.1038/ncomms10929.
    [108]
    LI Min, SHEN Lian, JING Liqiao, et al. Origami metawall: Mechanically controlled absorption and deflection of light[J]. Advanced Science, 2019, 6(23): 1901434. doi: 10.1002/advs.201901434.
    [109]
    WANG Zuojia, JING Liqiao, YAO Kan, et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Advanced Materials, 2017, 29(27): 1700412. doi: 10.1002/adma.201700412.
    [110]
    Zhu Zhibiao, WANG He, LI Yongfeng, et al. Origami-based metamaterials for dynamic control of wide-angle absorption in a reconfigurable manner[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4558–4568. doi: 10.1109/TAP.2022.3140521.
    [111]
    ZHENG Yilin, CHEN Ke, YANG Weixu, et al. Kirigami reconfigurable gradient metasurface[J]. Advanced Functional Materials, 2022, 32(5): 2107699. doi: 10.1002/adfm.202107699.
    [112]
    ZHENG Yilin, WANG Shaojie, DUAN Kun, et al. Chirality-switching and reconfigurable spin-selective wavefront by origami deformation metasurface[J]. Laser & Photonics Reviews, 2024, 18(1): 2300720. doi: 10.1002/lpor.202300720.
    [113]
    LE D H and LIM S. Four-mode programmable metamaterial using ternary foldable origami[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28554–28561. doi: 10.1021/acsami.9b09301.
    [114]
    YANG Yunfang, VALLECCHI A, SHAMONINA E, et al. A new class of transformable kirigami metamaterials for reconfigurable electromagnetic systems[J]. Scientific Reports, 2023, 13(1): 1219. doi: 10.1038/s41598-022-27291-8.
    [115]
    CHEN Xiqiao, LI Wei, WU Zhuang, et al. Origami-based microwave absorber with a reconfigurable bandwidth[J]. Optics Letters, 2021, 46(6): 1349–1352. doi: 10.1364/OL.419093.
    [116]
    ZHU Zhibiao, LI Yongfeng, QIN Zhe, et al. Miura origami based reconfigurable polarization converter for multifunctional control of electromagnetic waves[J]. Photonics Research, 2024, 12(3): 581–586. doi: 10.1364/PRJ.504027.
    [117]
    WANG Zhongbao, CHEN Qiang, MA Yanli, et al. Design of thermal-switchable absorbing metasurface based on vanadium dioxide[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2302–2306. doi: 10.1109/LAWP.2022.3186802.
    [118]
    LIU Jianjun and FAN Lanlan. Development of a tunable terahertz absorber based on temperature control[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1681–1685. doi: 10.1002/mop.32211.
    [119]
    LIU Xingbo, WANG Qiu, ZHANG Xueqian, et al. Thermally dependent dynamic meta‐holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 2019, 7(12): 1900175. doi: 10.1002/adom.201900175.
    [120]
    LU Xueguang, DONG Bowen, ZHU Hongfu, et al. Two-channel VO2 memory meta-device for terahertz waves[J]. Nanomaterials, 2021, 11(12): 3409. doi: 10.3390/nano11123409.
    [121]
    LI Zenglin, WANG Wei, DENG Shaoxuan, et al. Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces[J]. Optics Letters, 2022, 47(2): 441–444. doi: 10.1364/OL.447377.
    [122]
    GUO Linyang, MA Xiaohui, CHANG Zhaoqing, et al. Tunable a temperature-dependent GST-based metamaterial absorber for switching and sensing applications[J]. Journal of Materials Research and Technology, 2021, 14: 772–779. doi: 10.1016/j.jmrt.2021.06.080.
    [123]
    CHEN Jiajia, CHEN Xieyu, LIU Kuan, et al. A thermally switchable bifunctional metasurface for broadband polarization conversion and absorption based on phase-change material[J]. Advanced Photonics Research, 2022, 3(9): 2100369. doi: 10.1002/adpr.202100369.
    [124]
    SONG Yipeng and XU Peipeng. Design of ultra-low insertion loss active transverse electric-pass polarizer based Ge2Sb2Te5 on silicon waveguide[J]. Optics Communications, 2018, 426: 30–34. doi: 10.1016/j.optcom.2018.05.034.
    [125]
    ZHANG Shijie, WANG Qi, ZENG Ruimei, et al. Thermal tuning nanoprinting based on liquid crystal tunable dual-layered metasurfaces for optical information encryption[J]. Optics Express, 2024, 32(3): 4639–4649. doi: 10.1364/OE.514603.
    [126]
    SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308–4315. doi: 10.1021/acsnano.5b00723.
    [127]
    SHARMA M and ELLENBOGEN T. An all-optically controlled liquid-crystal plasmonic metasurface platform[J]. Laser & Photonics Reviews, 2020, 14(11): 2000253. doi: 10.1002/lpor.202000253.
    [128]
    RAHMANI M, XU Lei, MIROSHNICHENKO A E, et al. Reversible thermal tuning of all-dielectric metasurfaces[J]. Advanced Functional Materials, 2017, 27(31): 1700580. doi: 10.1002/adfm.201700580.
    [129]
    YANG Daquan, ZHANG Chao, LI Xiaogang, et al. InSb-enhanced thermally tunable terahertz silicon metasurfaces[J]. IEEE Access, 2019, 7: 95087–95093. doi: 10.1109/ACCESS.2019.2928225.
    [130]
    IYER P P, PENDHARKAR M, PALMSTRØM C J, et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates[J]. Nature Communications, 2017, 8(1): 472. doi: 10.1038/s41467-017-00615-3.
    [131]
    SHIRMANESH G K, SOKHOYAN R, WU P C, et al. Electro-optically tunable multifunctional metasurfaces[J]. ACS Nano, 2020, 14(6): 6912–6920. doi: 10.1021/acsnano.0c01269.
    [132]
    LI Jianxiong, YU Ping, ZHANG Shuang, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3.
    [133]
    LI Yue, LIN Jing, GUO Huijie, et al. A tunable metasurface with switchable functionalities: From perfect transparency to perfect absorption[J]. Advanced Optical Materials, 2020, 8(6): 1901548. doi: 10.1002/adom.201901548.
    [134]
    LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23554–23564. doi: 10.1021/acsami.0c02467.
    [135]
    KE Junchen, DAI Junyan, ZHANG Junwei, et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases[J]. Light: Science & Applications, 2022, 11(1): 273. doi: 10.1038/s41377-022-00973-8.
    [136]
    SONG Xinyun, YANG Weixu, QU Kai, et al. Switchable metasurface for nearly perfect reflection, transmission, and absorption using PIN diodes[J]. Optics Express, 2021, 29(18): 29320–29328. doi: 10.1364/OE.436261.
    [137]
    LIAO Jianming, GUO Shaojun, YUAN Liming, et al. Independent manipulation of reflection amplitude and phase by a single-layer reconfigurable metasurface[J]. Advanced Optical Materials, 2022, 10(4): 2101551. doi: 10.1002/adom.202101551.
    [138]
    HUANG Cheng, ZHANG Changlei, YANG Jianning, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485.
    [139]
    JEONG H, LE D H, LIM D, et al. Reconfigurable metasurfaces for frequency selective absorption[J]. Advanced Optical Materials, 2020, 8(13): 1902182. doi: 10.1002/adom.201902182.
    [140]
    PHON R, LEE M, LOR C, et al. Multifunctional reflective metasurface to independently and simultaneously control amplitude and phase with frequency tunability[J]. Advanced Optical Materials, 2023, 11(14): 2202943. doi: 10.1002/adom.202202943.
    [141]
    ZHANG Xinge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382.
    [142]
    GHOSH S and SRIVASTAVA K V. Polarization-insensitive single-/dual-band tunable absorber with independent tuning in wide frequency range[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4903–4908. doi: 10.1109/TAP.2017.2731381.
    [143]
    ZHU Ruichao, WANG Jiafu, DING Chang, et al. Multi-field-sensing metasurface with robust self-adaptive reconfigurability[J]. Nanophotonics, 2023, 12(7): 1337–1345. doi: 10.1515/nanoph-2023-0050.
    [144]
    ZHANG Jin, WEI Xingzhan, RUKHLENKO I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 2020, 7(1): 265–271. doi: 10.1021/acsphotonics.9b01532.
    [145]
    KIM Y, WU P C, SOKHOYAN R, et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J]. Nano Letters, 2019, 19(6): 3961–3968. doi: 10.1021/acs.nanolett.9b01246.
    [146]
    PARK D J, SHIN J H, PARK K H, et al. Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on VO2[J]. Optics Express, 2018, 26(13): 17397–17406. doi: 10.1364/OE.26.017397.
    [147]
    FOROUZMAND A, SALARY M M, SHIRMANESH G K, et al. Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide[J]. Nanophotonics, 2019, 8(3): 415–427. doi: 10.1515/nanoph-2018-0176.
    [148]
    ZHANG Jinqiannan, YANG Jingyi, SCHELL M, et al. Gate-tunable optical filter based on conducting oxide metasurface heterostructure[J]. Optics Letters, 2019, 44(15): 3653–3656. doi: 10.1364/OL.44.003653.
    [149]
    LUO Wei, ABBASI S A, ZHU Shaodi, et al. Electrically switchable and tunable infrared light modulator based on functional graphene metasurface[J]. Nanophotonics, 2023, 12(9): 1797–1807. doi: 10.1515/nanoph-2023-0048.
    [150]
    YAO Wei, TANG Linlong, NONG Jinpeng, et al. Electrically tunable graphene metamaterial with strong broadband absorption[J]. Nanotechnology, 2021, 32(7): 075703. doi: 10.1088/1361-6528/abc44f.
    [151]
    CAI Ziqiang and LIU Yongmin. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces[J]. Advanced Optical Materials, 2022, 10(6): 2102135. doi: 10.1002/adom.202102135.
    [152]
    XU Zhixiang, NI Cheng, CHENG Yongzhi, et al. Photo-excited metasurface for tunable terahertz reflective circular polarization conversion and anomalous beam deflection at two frequencies independently[J]. Nanomaterials, 2023, 13(12): 1846. doi: 10.3390/nano13121846.
    [153]
    ZHOU Qiangguo, LI Yongzhen, WU Tuntan, et al. Terahertz metasurface modulators based on photosensitive silicon[J]. Laser & Photonics Reviews, 2023, 17(6): 2200808. doi: 10.1002/lpor.202200808.
    [154]
    ULLAH A, WANG Y C, YEASMIN S, et al. Reconfigurable photoinduced terahertz wave modulation using hybrid metal-silicon metasurface[J]. Optics Letters, 2022, 47(11): 2750–2753. doi: 10.1364/OL.457573.
    [155]
    KIM J, CARNEMOLLA E G, DEVAULT C, et al. Dynamic control of nanocavities with tunable metal oxides[J]. Nano Letters, 2018, 18(2): 740–746. doi: 10.1021/acs.nanolett.7b03919.
    [156]
    SAHA S, DUTTA A, DEVAULT C, et al. Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics[J]. Materials Today, 2021, 43: 27–36. doi: 10.1016/j.mattod.2020.10.023.
    [157]
    WU Yuhao, CHOWDHURY S N, KANG Lei, et al. Zinc oxide (ZnO) hybrid metasurfaces exhibiting broadly tunable topological properties[J]. Nanophotonics, 2022, 11(17): 3933–3942. doi: 10.1515/nanoph-2022-0115.
    [158]
    YANG Yuanmu, KELLEY K, SACHET E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nature Photonics, 2017, 11(6): 390–395. doi: 10.1038/nphoton.2017.64.
    [159]
    ZHANG Xinge, JIANG Weixiang, and CUI Tiejun. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Applied Physics Letters, 2018, 113(9): 091601. doi: 10.1063/1.5045718.
    [160]
    ZHANG Xinge, JIANG Weixiang, JIANG Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165–171. doi: 10.1038/s41928-020-0380-5.
    [161]
    ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 2022, 4(2): 025001. doi: 10.1117/1.AP.4.2.025001.
    [162]
    CHEN Lei, NIE Qianfan, RUAN Ying, et al. Light-controllable metasurface for microwave wavefront manipulation[J]. Optics Express, 2020, 28(13): 18742–18749. doi: 10.1364/OE.396802.
    [163]
    CHEN Lei, YE Fuju, CUO Mu, et al. Ultraviolet-sensing metasurface for programmable electromagnetic scattering field manipulation by combining light control with a microwave field[J]. Optics Express, 2022, 30(11): 19212–19221. doi: 10.1364/OE.454111.
    [164]
    LI Ruijie, LIU Haixia, XU Peng, et al. Light-controlled metasurface with a controllable range of reflection phase modulation[J]. Journal of Physics D: Applied Physics, 2022, 55(22): 225302. doi: 10.1088/1361-6463/ac5555.
    [165]
    MIAO Siyu and LIN Fenghan. Light-controlled large-scale wirelessly reconfigurable microstrip reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1613–1622. doi: 10.1109/TAP.2022.3230551.
    [166]
    HU Yuze, HAO Hao, ZHANG Jun, et al. Anisotropic temporal metasurfaces for tunable ultrafast photoactive switching dynamics[J]. Laser & Photonics Reviews, 2021, 15(10): 2100244. doi: 10.1002/lpor.202100244.
    [167]
    JUNG I, JANG H J, HAN S, et al. Magnetic modulation of surface plasmon resonance by tailoring magnetically responsive metallic block in multisegment nanorods[J]. Chemistry of Materials, 2015, 27(24): 8433–8441. doi: 10.1021/acs.chemmater.5b04016.
    [168]
    ARMELLES G, BERGAMINI L, ZABALA N, et al. Metamaterial platforms for spintronic modulation of mid-infrared response under very weak magnetic field[J]. ACS Photonics, 2018, 5(10): 3956–3961. doi: 10.1021/acsphotonics.8b00866.
    [169]
    BI Yu, HUANG Lingling, LI Tuo, et al. Active metasurface via magnetic control for tri-channel polarization multiplexing holography[J]. Chinese Optics Letters, 2024, 22(4): 043601. doi: 10.3788/COL202422.043601.
    [170]
    JU Cheng, WU Ruixin, LI Zhen, et al. Manipulating electromagnetic wave propagating non-reciprocally by a chain of ferriterods[J]. Optics Express, 2017, 25(18): 22096–22103. doi: 10.1364/OE.25.022096.
    [171]
    GUO Yunsheng, HOU Xiaojuan, LV Xiaolong, et al. Tunable artificial microwave blackbodies based on metasurfaces[J]. Optics Express, 2017, 25(21): 25879–25885. doi: 10.1364/OE.25.025879.
    [172]
    ZHANG Yihan, WU Gaojian, and HUANG Chengping. Magnetic tuning of metasurfaces using ultrathin flexible metals bonded with ferrite patches[J]. Journal of Lightwave Technology, 2024, 42(9): 3277–3282. doi: 10.1109/JLT.2024.3351887.
    [173]
    LIU Peng, CHEN Xing, XU Wangdong, et al. Magnetically controlled multifunctional membrane acoustic metasurface[J]. Journal of Applied Physics, 2020, 127(18): 185104. doi: 10.1063/1.5145289.
    [174]
    GUO Jinying, WANG Teng, ZHAO Huan, et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced Optical Materials, 2019, 7(10): 1801696. doi: 10.1002/adom.201801696.
    [175]
    DU Zhiqiang, HE Canhui, XIN Jinhao, et al. Terahertz dynamic multichannel holograms generated by spin-multiplexing reflective metasurface[J]. Optics Express, 2024, 32(1): 248–259. doi: 10.1364/OE.510046.
    [176]
    LI Tianyou, WEI Qunshuo, REINEKE B, et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels[J]. Optics Express, 2019, 27(15): 21153–21162. doi: 10.1364/OE.27.021153.
    [177]
    LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9.
    [178]
    FENG Rui, RATNI B, YI Jianjia, et al. Reprogrammable digital holograms and multibit spatial energy modulation using a reflective metasurface[J]. ACS Applied Electronic Materials, 2021, 3(12): 5272–5277. doi: 10.1021/acsaelm.1c00786.
    [179]
    HU Yuan, CHEN Shaonan, SHI Yan, et al. Space-time coding metasurface for multifunctional holographic imaging[J]. Advanced Materials Technologies, 2024, 9(12): 2302164. doi: 10.1002/admt.202302164.
    [180]
    ZHANG M, ZHANG W, LIU A Q, et al. Tunable polarization conversion and rotation based on a reconfigurable metasurface[J]. Scientific Reports, 2017, 7(1): 12068. doi: 10.1038/s41598-017-11953-z.
    [181]
    YU Ping, LI Jianxiong, and LIU Na. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Letters, 2021, 21(15): 6690–6695. doi: 10.1021/acs.nanolett.1c02318.
    [182]
    FENG Jinlong, CHEN Xiepeng, WU Linsheng, et al. Broadband electrically tunable linear polarization converter based on a graphene metasurface[J]. Optics Express, 2023, 31(2): 1420–1431. doi: 10.1364/OE.477907.
    [183]
    HOU Yanzhao, ZHANG Chao, and WANG Chengrui. High-efficiency and tunable terahertz linear-to-circular polarization converters based on all-dielectric metasurfaces[J]. IEEE Access, 2020, 8: 140303–140309. doi: 10.1109/ACCESS.2020.3007838.
    [184]
    YU Fuyuan, ZHU Jiabing, and SHEN Xiaobo. Tunable and reflective polarization converter based on single-layer vanadium dioxide-integrated metasurface in terahertz region[J]. Optical Materials, 2022, 123: 111745. doi: 10.1016/j.optmat.2021.111745.
    [185]
    GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi: 10.1109/TAP.2018.2866636.
    [186]
    YANG Zhengyi, KOU Na, YU Shixing, et al. Reconfigurable multifunction polarization converter integrated with PIN diode[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 557–560. doi: 10.1109/LMWC.2021.3064039.
    [187]
    AFRIDI A, GIESELER J, MEYER N, et al. Ultrathin tunable optomechanical metalens[J]. Nano Letters, 2023, 23(7): 2496–2501. doi: 10.1021/acs.nanolett.2c04105.
    [188]
    SHALAGINOV M Y, AN Sensong, ZHANG Yifei, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 2021, 12(1): 1225. doi: 10.1038/s41467-021-21440-9.
    [189]
    ZHANG Zhaokun, QI Xiangqian, ZHANG Jianfa, et al. Graphene-enabled electrically tunability of metalens in the terahertz range[J]. Optics Express, 2020, 28(19): 28101–28112. doi: 10.1364/OE.401627.
    [190]
    LIU Weiguang, HU Bin, HUANG Zongduo, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 2018, 6(7): 703–708. doi: 10.1364/PRJ.6.000703.
    [191]
    ZHANG Yongai, LIN Chaofu, LIN Jianpu, et al. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane[J]. Optics Communications, 2018, 412: 114–120. doi: 10.1016/j.optcom.2017.12.008.
    [192]
    BADLOE T, KIM I, KIM Y, et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths[J]. Advanced Science, 2021, 8(21): 2102646. doi: 10.1002/advs.202102646.
    [193]
    KOMAR A, PANIAGUA-DOMÍNGUEZ P, MIROSHNICHENKO A, et al. Dynamic beam switching by liquid crystal tunable Dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742–1748. doi: 10.1021/acsphotonics.7b01343.
    [194]
    KIM S I, PARK J, JEONG B G, et al. Two-dimensional beam steering with tunable metasurface in infrared regime[J]. Nanophotonics, 2022, 11(11): 2719–2726. doi: 10.1515/nanoph-2021-0664.
    [195]
    HUANG Yaowei, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9): 5319–5325. doi: 10.1021/acs.nanolett.6b00555.
    [196]
    WU P C, PALA R A, SHIRMANESH G K, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nature Communications, 2019, 10(1): 3654. doi: 10.1038/s41467-019-11598-8.
    [197]
    HASHEMI M R M, YANG Shanghua, WANG Tongyu, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Scientific Reports, 2016, 6(1): 35439. doi: 10.1038/srep35439.
    [198]
    ZHUANG Xiaolin, ZHANG Wei, WANG Kemeng, et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface[J]. Light: Science & Applications, 2023, 12(1): 14. doi: 10.1038/s41377-022-01046-6.
    [199]
    ZHANG Kuang, YUAN Yueyi, ZHANG Dawei, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region[J]. Optics Express, 2018, 26(2): 1351–1360. doi: 10.1364/OE.26.001351.
    [200]
    LI Sijia, LI Zhouyue, LIU Xiaobin, et al. Transmissive digital coding metasurfaces for polarization-dependent dual-mode quad orbital angular momentum beams[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23690–23700. doi: 10.1021/acsami.3c04082.
    [201]
    TANG Pengcheng, SI Liming, YUAN Qianqian, et al. Dynamic generation of multiplexed vortex beams by a space-time-coding metasurface[J]. Photonics Research, 2025, 13(1): 225–234. doi: 10.1364/PRJ.543744.
    [202]
    MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8(1): 98. doi: 10.1038/s41377-019-0205-3.
    [203]
    WANG Haipeng, LI Yunbo, LI He, et al. Intelligent metasurface with frequency recognition for adaptive manipulation of electromagnetic wave[J]. Nanophotonics, 2022, 11(7): 1401–1411. doi: 10.1515/nanoph-2021-0799.
    [204]
    JIANG Ruizhe, MA Qian, GU Ze, et al. Simultaneously intelligent sensing and beamforming based on an adaptive information metasurface[J]. Advanced Science, 2024, 11(7): 2306181. doi: 10.1002/advs.202306181.
    [205]
    GAO Chengjing, LAI Tingjun, PENG Liang, et al. Multifunctional intelligent reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2024, 16(41): 55675–55683. doi: 10.1021/acsami.4c09944.
    [206]
    SHE Ying, JI Chen, HUANG Cheng, et al. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching[J]. Photonics Research, 2022, 10(3): 769–776. doi: 10.1364/PRJ.450297.
    [207]
    QIAN Chao, ZHENG Bin, SHEN Yichen, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383–390. doi: 10.1038/s41566-020-0604-2.
    [208]
    LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 2019, 8(1): 97. doi: 10.1038/s41377-019-0209-z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(196) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint