Citation: | LI Yuxi, ZHU Ruichao, SUI Sai, et al. Dynamic electromagnetic control technology and its application based on metasurface[J]. Journal of Radars, in press. doi: 10.12000/JR24259 |
[1] |
ZHANG Xinge, TANG Wenxuan, JIANG Weixiang, et al. Light-controllable digital coding metasurfaces[J]. Advanced Science, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028.
|
[2] |
JIANG Shan, LIU Xuejun, LIU Jianpeng, et al. Flexible metamaterial electronics[J]. Advanced Materials, 2022, 34(52): 2200070. doi: 10.1002/adma.202200070.
|
[3] |
CHEN Tian, PAULY M, and REIS P M. A reprogrammable mechanical metamaterial with stable memory[J]. Nature, 2021, 589(7842): 386–390. doi: 10.1038/s41586-020-03123-5.
|
[4] |
YU Peng, BESTEIRO L V, HUANG Yongjun, et al. Broadband metamaterial absorbers[J]. Advanced Optical Materials, 2019, 7(3): 1800995. doi: 10.1002/adom.201800995.
|
[5] |
SHEN Suling, LIU Xudong, SHEN Yaochun, et al. Recent advances in the development of materials for terahertz metamaterial sensing[J]. Advanced Optical Materials, 2022, 10(1): 2101008. doi: 10.1002/adom.202101008.
|
[6] |
MEI Tie, MENG Zhiqiang, ZHAO Kejie, et al. A mechanical metamaterial with reprogrammable logical functions[J]. Nature Communications, 2021, 12(1): 7234. doi: 10.1038/s41467-021-27608-7.
|
[7] |
ZHENG Xiaoyang, ZHANG Xubo, CHEN Tate, et al. Deep learning in mechanical metamaterials: From prediction and generation to inverse design[J]. Advanced Materials, 2023, 35(45): 2302530. doi: 10.1002/adma.202302530.
|
[8] |
CUI Tiejun. Microwave metamaterials[J]. National Science Review, 2018, 5(2): 134–136. doi: 10.1093/nsr/nwx133.
|
[9] |
WANG Yifan, NIU Jiarong, JIN Xin, et al. Molecularly resonant metamaterials for broad-band electromagnetic stealth[J]. Advanced Science, 2023, 10(19): 2301170. doi: 10.1002/advs.202301170.
|
[10] |
KIM J, HAN K, and HAHN J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports, 2017, 7(1): 6740. doi: 10.1038/s41598-017-06749-0.
|
[11] |
PADILLA W J and AVERITT R D. Imaging with metamaterials[J]. Nature Reviews Physics, 2022, 4(2): 85–100. doi: 10.1038/s42254-021-00394-3.
|
[12] |
WATTS C M, NADELL C C, MONTOYA J, et al. Frequency-division-multiplexed single-pixel imaging with metamaterials[J]. Optica, 2016, 3(2): 133–138. doi: 10.1364/OPTICA.3.000133.
|
[13] |
LUO Yong, QIN Kewei, KE Hao, et al. Active metamaterial antenna with beam scanning manipulation based on a digitally modulated array factor method[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1198–1203. doi: 10.1109/TAP.2020.3010941.
|
[14] |
PENG Yugui, SHEN Yaxi, GENG Zhiguo, et al. Super-resolution acoustic image montage via a biaxial metamaterial lens[J]. Science Bulletin, 2020, 65(12): 1022–1029. doi: 10.1016/j.scib.2020.03.018.
|
[15] |
LEE G Y, HONG J Y, HWANG S, et al. Metasurface eyepiece for augmented reality[J]. Nature Communications, 2018, 9(1): 4562. doi: 10.1038/s41467-018-07011-5.
|
[16] |
DAI Xuemei, DONG Fengliang, ZHANG Kun, et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing[J]. ACS Photonics, 2021, 8(8): 2294–2303. doi: 10.1021/acsphotonics.1c00411.
|
[17] |
ESFANDIARI M, LALBAKHSH A, SHEHNI P N, et al. Recent and emerging applications of Graphene-based metamaterials in electromagnetics[J]. Materials & Design, 2022, 221: 110920. doi: 10.1016/j.matdes.2022.110920.
|
[18] |
DORRAH A H, RUBIN N A, ZAIDI A, et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nature Photonics, 2021, 15(4): 287–296. doi: 10.1038/s41566-020-00750-2.
|
[19] |
QIU Tianshuo, SHI Xin, WANG Jiafu, et al. Deep learning: A rapid and efficient route to automatic metasurface design[J]. Advanced Science, 2019, 6(12): 1900128. doi: 10.1002/advs.201900128.
|
[20] |
WANG Hailin, ZHANG Yankai, ZHANG Taiyi, et al. Broadband and programmable amplitude-phase-joint-coding information metasurface[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29431–29440. doi: 10.1021/acsami.2c05907.
|
[21] |
CUI Tiejun. Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves[J]. Journal of Optics, 2017, 19(8): 084004. doi: 10.1088/2040-8986/aa7009.
|
[22] |
ZHAO Ruizhe, HUANG Lingling, and WANG Yongtian. Recent advances in multi-dimensional metasurfaces holographic technologies[J]. PhotoniX, 2020, 1(1): 20. doi: 10.1186/s43074-020-00020-y.
|
[23] |
ZAHRA S, MA Liang, WANG Wenjiao, et al. Electromagnetic metasurfaces and reconfigurable metasurfaces: A review[J]. Frontiers in Physics, 2021, 8: 593411. doi: 10.3389/fphy.2020.593411.
|
[24] |
LI Jie, ZHENG Chenglong, LI Jitao, et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface[J]. Photonics Research, 2021, 9(10): 1939–1947. doi: 10.1364/PRJ.431019.
|
[25] |
HE An, GUO Xuhan, WANG Ting, et al. Ultracompact fiber-to-chip metamaterial edge coupler[J]. ACS Photonics, 2021, 8(11): 3226–3233. doi: 10.1021/acsphotonics.1c00993.
|
[26] |
ABDOLRAZZAGHI M, DANESHMAND M, and IYER A K. Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(4): 1843–1855. doi: 10.1109/TMTT.2018.2791942.
|
[27] |
HU Jingpei, ZHAO Xiaonan, LIN Yu, et al. All-dielectric metasurface circular dichroism waveplate[J]. Scientific Reports, 2017, 7(1): 41893. doi: 10.1038/srep41893.
|
[28] |
BIBBÒ L, KHAN K, LIU Qiang, et al. Tunable narrowband antireflection optical filter with a metasurface[J]. Photonics Research, 2017, 5(5): 500–506. doi: 10.1364/PRJ.5.000500.
|
[29] |
YUE Wenjing, GAO Song, LEE S S, et al. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors[J]. Laser & Photonics Reviews, 2017, 11(3): 1600285. doi: 10.1002/lpor.201600285.
|
[30] |
TANG Shiwei, LI Xike, PAN Weikang, et al. High-efficiency broadband vortex beam generator based on transmissive metasurface[J]. Optics Express, 2019, 27(4): 4281–4291. doi: 10.1364/OE.27.004281.
|
[31] |
ZHANG Liang, GUO Jie, and DING Tongyu. Ultrathin dual-mode vortex beam generator based on anisotropic coding metasurface[J]. Scientific Reports, 2021, 11(1): 5766. doi: 10.1038/s41598-021-85374-4.
|
[32] |
HE Xunjun, CHEN Guang, GENG Zhaoxin, et al. On-chip dynamic manipulation of terahertz spoof surface wavefronts with reconfigurable metasurfaces[J]. Optics Express, 2025, 33(4): 7927–7941. doi: 10.1364/OE.542534.
|
[33] |
WANG Meng, MA Huifeng, WU Liangwei, et al. Hybrid digital coding metasurface for independent control of propagating surface and spatial waves[J]. Advanced Optical Materials, 2019, 7(13): 1900478. doi: 10.1002/adom.201900478.
|
[34] |
CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422.
|
[35] |
FENG Rui, RATNI B, YI Jianjia, et al. Versatile metasurface platform for electromagnetic wave tailoring[J]. Photonics Research, 2021, 9(9): 1650–1659. doi: 10.1364/PRJ.428853.
|
[36] |
HU Qi, ZHAO Jianmin, CHEN Ke, et al. An intelligent programmable omni-metasurface[J]. Laser & Photonics Reviews, 2022, 16(6): 2100718. doi: 10.1002/lpor.202100718.
|
[37] |
ZHANG Xinge, SUN Yalun, HUANG Zhixiang, et al. A review of light-controlled programmable metasurfaces for remote microwave control and hybrid signal processing[J]. Engineering Reports, 2023, 5(9): e12658. doi: 10.1002/eng2.12658.
|
[38] |
LI Chong, JIANG Tianxi, HE Qingbo, et al. Smart metasurface shaft for vibration source identification with a single sensor[J]. Journal of Sound and Vibration, 2021, 493: 115836. doi: 10.1016/j.jsv.2020.115836.
|
[39] |
ZHANG Shuang. Intelligent metasurfaces: Digitalized, programmable, and intelligent platforms[J]. Light: Science & Applications, 2022, 11(1): 242. doi: 10.1038/s41377-022-00876-8.
|
[40] |
JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. In situ customized illusion enabled by global metasurface reconstruction[J]. Advanced Functional Materials, 2022, 32(19): 2109331. doi: 10.1002/adfm.202109331.
|
[41] |
PITILAKIS A, TSILIPAKOS O, LIU Fu, et al. A multi-functional reconfigurable metasurface: Electromagnetic design accounting for fabrication aspects[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1440–1454. doi: 10.1109/TAP.2020.3016479.
|
[42] |
MA Yihan, LUO Qi, ZHANG Cheng, et al. Deep learning enables multifunctional metasurfaces design with mutual coupling estimation[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(11): 8443–8451. doi: 10.1109/TAP.2024.3443151.
|
[43] |
HOSSAIN M A, BAHCECI I, and CETINER B A. Parasitic layer-based radiation pattern reconfigurable antenna for 5G communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6444–6452. doi: 10.1109/TAP.2017.2757962.
|
[44] |
JIN Guiping, LI Miaolan, LIU Dan, et al. A simple planar pattern-reconfigurable antenna based on arc dipoles[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1664–1668. doi: 10.1109/LAWP.2018.2862624.
|
[45] |
BRONCKERS L A, ROC’H A, and SMOLDERS A B. A new design method for frequency-reconfigurable antennas using multiple tuning components[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7285–7295. doi: 10.1109/TAP.2019.2930204.
|
[46] |
IQBAL A, SMIDA A, ABDULRAZAK L F, et al. Low-profile frequency reconfigurable antenna for heterogeneous wireless systems[J]. Electronics, 2019, 8(9): 976. doi: 10.3390/electronics8090976.
|
[47] |
REN Jian, ZHOU Zhao, WEI Zhaohui, et al. Radiation pattern and polarization reconfigurable antenna using dielectric liquid[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 8174–8179. doi: 10.1109/TAP.2020.2996811.
|
[48] |
NI Chun, CHEN Mingsheng, ZHANG Zhongxiang, et al. Design of frequency- and polarization-reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 78–81. doi: 10.1109/LAWP.2017.2775444.
|
[49] |
IQBAL A, SMIDA A, MALLAT N K, et al. Frequency and pattern reconfigurable antenna for emerging wireless communication systems[J]. Electronics, 2019, 8(4): 407. doi: 10.3390/electronics8040407.
|
[50] |
CHEN Shulin, QIN Peiyuan, LIN Wei, et al. Pattern-reconfigurable antenna with five switchable beams in elevation plane[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3): 454–457. doi: 10.1109/LAWP.2018.2794990.
|
[51] |
CAO Junmei, MA Hongyu, XIE Shuhuan, et al. Highly efficient abnormal reflection via underwater acoustic metagratings[J]. Physical Review Applied, 2024, 21(3): 034015. doi: 10.1103/PhysRevApplied.21.034015.
|
[52] |
FANG Xiang, LUO Jie, WU Zhuang, et al. Reconfigurable coding metamaterial for enhancing RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(11): 8854–8861. doi: 10.1109/TAP.2023.3294752.
|
[53] |
CAI Ziru, WU Cuo, JIANG Jing, et al. Phase-change metasurface for switchable vector vortex beam generation[J]. Optics Express, 2021, 29(26): 42762–42771. doi: 10.1364/OE.444956.
|
[54] |
MA Wei, HOU Maojing, LUO Ruiqi, et al. Topologically-optimized on-chip metamaterials for ultra-short-range light focusing and mode-size conversion[J]. Nanophotonics, 2023, 12(6): 1189–1197. doi: 10.1515/nanoph-2023-0036.
|
[55] |
ZHOU Haoyang, ZHANG Sheng, WANG Shunjia, et al. Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves[J]. Advanced Photonics, 2023, 5(2): 026005. doi: 10.1117/1.AP.5.2.026005.
|
[56] |
ZHANG Shoujun, CHEN Xieyu, LIU Kuan, et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 2022, 3(1): 7. doi: 10.1186/s43074-022-00053-5.
|
[57] |
POGREBNYAKOV A V, BOSSARD J A, TURPIN J P, et al. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material[J]. Optical Materials Express, 2018, 8(8): 2264–2275. doi: 10.1364/OME.8.002264.
|
[58] |
REN Mengxin, WU Wei, CAI Wei, et al. Reconfigurable metasurfaces that enable light polarization control by light[J]. Light: Science & Applications, 2017, 6(6): e16254. doi: 10.1038/lsa.2016.254.
|
[59] |
KIM S J, KIM I, CHOI S, et al. Reconfigurable all-dielectric Fano metasurfaces for strong full-space intensity modulation of visible light[J]. Nanoscale Horizons, 2020, 5(7): 1088–1095. doi: 10.1039/D0NH00139B.
|
[60] |
XU Ziquan, LUO Hao, ZHU Huanzheng, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Letters, 2021, 21(12): 5269–5276. doi: 10.1021/acs.nanolett.1c01396.
|
[61] |
CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99.
|
[62] |
ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0.
|
[63] |
WANG Hailin, MA Huifeng, CHEN Mao, et al. A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves[J]. Advanced Functional Materials, 2021, 31(25): 2100275. doi: 10.1002/adfm.202100275.
|
[64] |
HUANG Lingling, ZHANG Shuang, and ZENTGRAF T. Metasurface holography: From fundamentals to applications[J]. Nanophotonics, 2018, 7(6): 1169–1190. doi: 10.1515/nanoph-2017-0118.
|
[65] |
RIVENSON Y, ZHANG Yibo, GÜNAYDIN H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 2018, 7(2): 17141. doi: 10.1038/lsa.2017.141.
|
[66] |
ZHU Ruichao, WANG Jiafu, FU Xinmin, et al. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 48303–48310. doi: 10.1021/acsami.2c15362.
|
[67] |
HAN H, PARK S, PARK H, et al. Low spurious, broadband reflection frequency modulation using an active metasurface[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(4): 359–362. doi: 10.1109/LMWC.2021.3127316.
|
[68] |
YANG Heng, HE Yuan, TONG Meisong, et al. A reflection-transmission multifunctional polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 5099–5109. doi: 10.1109/TAP.2024.3400619.
|
[69] |
LI Weihan, MA Qian, LIU Che, et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision[J]. Nature Communications, 2023, 14(1): 989. doi: 10.1038/s41467-023-36645-3.
|
[70] |
ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135.
|
[71] |
DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044.
|
[72] |
MA Qian, LIU Che, XIAO Qiang, et al. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 2022, 1(1): R01. doi: 10.3788/PI.2022.R01.
|
[73] |
LI Shangyang, LIU Zhouyang, FU Shilei, et al. Intelligent beamforming via physics-inspired neural networks on programmable metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4589–4599. doi: 10.1109/TAP.2022.3140891.
|
[74] |
JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. A knowledge-inherited learning for intelligent metasurface design and assembly[J]. Light: Science & Applications, 2023, 12(1): 82. doi: 10.1038/s41377-023-01131-4.
|
[75] |
LIU Guodong, HU Wangsheng, HOU Wenying, et al. Indoor positioning and posture recognition of human body applying integrating-type intelligent metasurfaces based sensing system[J]. Advanced Materials Technologies, 2023, 8(22): 2301006. doi: 10.1002/admt.202301006.
|
[76] |
CHEN Benwen, WANG Xinru, LI Weili, et al. Electrically addressable integrated intelligent terahertz metasurface[J]. Science Advances, 2022, 8(41): eadd1296. doi: 10.1126/sciadv.add1296.
|
[77] |
LI Yuxi, WANG Jiafu, SUI Sai, et al. Simplistic framework of single-pixel-programmable metasurfaces integrated with a capsuled LED array[J]. Photonics Research, 2024, 12(5): 884–894. doi: 10.1364/PRJ.506044.
|
[78] |
REN Zhihao, CHANG Yuhua, MA Yiming, et al. Leveraging of MEMS technologies for optical metamaterials applications[J]. Advanced Optical Materials, 2020, 8(3): 1900653. doi: 10.1002/adom.201900653.
|
[79] |
CHANG Yuhua, WEI Jingxuan, and LEE C. Metamaterials-from fundamentals and MEMS tuning mechanisms to applications[J]. Nanophotonics, 2020, 9(10): 3049–3070. doi: 10.1515/nanoph-2020-0045.
|
[80] |
PITCHAPPA P, HO C P, CONG Longqing, et al. Reconfigurable digital metamaterial for dynamic switching of terahertz anisotropy[J]. Advanced Optical Materials, 2016, 4(3): 391–398. doi: 10.1002/adom.201500588.
|
[81] |
PITCHAPPA P, MANJAPPA M, HO C P, et al. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices[J]. Applied Physics Letters, 2016, 108(11): 111102. doi: 10.1063/1.4943974.
|
[82] |
YANG Weixu, CHEN Ke, ZHENG Yilin, et al. Angular-adaptive reconfigurable spin-locked metasurface retroreflector[J]. Advanced Science, 2021, 8(21): 2100885. doi: 10.1002/advs.202100885.
|
[83] |
XU Ruijia and LIN Yusheng. Flexible and controllable metadevice using self-assembly MEMS actuator[J]. Nano Letters, 2021, 21(7): 3205–3210. doi: 10.1021/acs.nanolett.1c00391.
|
[84] |
XU Ruijia, XU Xiaocan, YANG Boru, et al. Actively logical modulation of MEMS-based terahertz metamaterial[J]. Photonics Research, 2021, 9(7): 1409–1415. doi: 10.1364/PRJ.420876.
|
[85] |
LALAS A X, KANTARTZIS N V, and TSIBOUKIS T D. Reconfigurable metamaterial components exploiting two-hot-arm electrothermal actuators[J]. Microsystem Technologies, 2015, 21(10): 2097–2107. doi: 10.1007/s00542-015-2407-9.
|
[86] |
SARAVANA JOTHI N S and HUNT A. Active mechanical metamaterial with embedded piezoelectric actuation[J]. APL Materials, 2022, 10(9): 091117. doi: 10.1063/5.0101420.
|
[87] |
MAVRIDOU M and FERESIDIS A P. Dynamically reconfigurable high impedance and frequency selective metasurfaces using piezoelectric actuators[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5190–5197. doi: 10.1109/TAP.2016.2617372.
|
[88] |
DOERGER S R and HARNETT C K. Force-amplified soft electromagnetic actuators[J]. Actuators, 2018, 7(4): 76. doi: 10.3390/act7040076.
|
[89] |
ZHOU Shengrui, LIANG Chao, MEI Ziqi, et al. Design and implementation of a flexible electromagnetic actuator for tunable terahertz metamaterials[J]. Micromachines, 2024, 15(2): 219. doi: 10.3390/mi15020219.
|
[90] |
MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies[J]. Nature Communications, 2018, 9(1): 4056. doi: 10.1038/s41467-018-06360-5.
|
[91] |
DENG Yadong, MENG Chao, THRANE P C V, et al. MEMS-integrated metasurfaces for dynamic linear polarizers[J]. Optica, 2024, 11(3): 326–332. doi: 10.1364/OPTICA.515524.
|
[92] |
ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6.
|
[93] |
ROY T, ZHANG Shuyan, JUNG I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi: 10.1063/1.5018865.
|
[94] |
HAN Zheyi, COLBURN S, MAJUMDAR A, et al. MEMS-actuated metasurface Alvarez lens[J]. Microsystems & Nanoengineering, 2020, 6(1): 79. doi: 10.1038/s41378-020-00190-6.
|
[95] |
MENG Chao, THRANE P C V, DING Fei, et al. Dynamic piezoelectric MEMS-based optical metasurfaces[J]. Science Advances, 2021, 7(26): eabg5639. doi: 10.1126/sciadv.abg5639.
|
[96] |
LI Jing, FAN Hongjie, YE Han, et al. Design of multifunctional tunable metasurface assisted by elastic substrate[J]. Nanomaterials, 2022, 12(14): 2387. doi: 10.3390/nano12142387.
|
[97] |
CHEN Fanqi, LIU Xiaojie, TIAN Yanpei, et al. Mechanically stretchable metamaterial with tunable mid-infrared optical properties[J]. Optics Express, 2021, 29(23): 37368–37375. doi: 10.1364/OE.439767.
|
[98] |
EE H S and AGARWAL R. et al. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818–2823. doi: 10.1021/acs.nanolett.6b00618.
|
[99] |
MALEK S C, EE H S, and AGARWAL R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6): 3641–3645. doi: 10.1021/acs.nanolett.7b00807.
|
[100] |
ZHANG Chen, JING Jixiang, WU Yunkai, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418–1426. doi: 10.1021/acsnano.9b08228.
|
[101] |
FAN Xuanqian, LI Yuhang, CHEN Sihong, et al. Mechanical terahertz modulation by skin-like ultrathin stretchable metasurface[J]. Small, 2020, 16(37): 2002484. doi: 10.1002/smll.202002484.
|
[102] |
XU Zefeng and LIN Yusheng. A stretchable terahertz parabolic-shaped metamaterial[J]. Advanced Optical Materials, 2019, 7(19): 1900379. doi: 10.1002/adom.201900379.
|
[103] |
LI Binghui, SHI Lintao, and LIN Yusheng. Stretchable and tunable quartered split-ring resonator (QSRR) using terahertz metamaterial[J]. Optics & Laser Technology, 2024, 174: 110692. doi: 10.1016/j.optlastec.2024.110692.
|
[104] |
ZHOU Yunlei, WANG Shaolei, YIN Junyi, et al. Flexible metasurfaces for multifunctional interfaces[J]. ACS Nano, 2024, 18(4): 2685–2707. doi: 10.1021/acsnano.3c09310.
|
[105] |
XU Ruijia and LIN Yusheng. Actively MEMS-based tunable metamaterials for advanced and emerging applications[J]. Electronics, 2022, 11(2): 243. doi: 10.3390/electronics11020243.
|
[106] |
DAS B, YUN H S, PARK N, et al. A transformative metasurface based on zerogap embedded template[J]. Advanced Optical Materials, 2021, 9(11): 2002164. doi: 10.1002/adom.202002164.
|
[107] |
OVERVELDE J T B, DE JONG T A, SHEVCHENKO Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications, 2016, 7(1): 10929. doi: 10.1038/ncomms10929.
|
[108] |
LI Min, SHEN Lian, JING Liqiao, et al. Origami metawall: Mechanically controlled absorption and deflection of light[J]. Advanced Science, 2019, 6(23): 1901434. doi: 10.1002/advs.201901434.
|
[109] |
WANG Zuojia, JING Liqiao, YAO Kan, et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Advanced Materials, 2017, 29(27): 1700412. doi: 10.1002/adma.201700412.
|
[110] |
Zhu Zhibiao, WANG He, LI Yongfeng, et al. Origami-based metamaterials for dynamic control of wide-angle absorption in a reconfigurable manner[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4558–4568. doi: 10.1109/TAP.2022.3140521.
|
[111] |
ZHENG Yilin, CHEN Ke, YANG Weixu, et al. Kirigami reconfigurable gradient metasurface[J]. Advanced Functional Materials, 2022, 32(5): 2107699. doi: 10.1002/adfm.202107699.
|
[112] |
ZHENG Yilin, WANG Shaojie, DUAN Kun, et al. Chirality-switching and reconfigurable spin-selective wavefront by origami deformation metasurface[J]. Laser & Photonics Reviews, 2024, 18(1): 2300720. doi: 10.1002/lpor.202300720.
|
[113] |
LE D H and LIM S. Four-mode programmable metamaterial using ternary foldable origami[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28554–28561. doi: 10.1021/acsami.9b09301.
|
[114] |
YANG Yunfang, VALLECCHI A, SHAMONINA E, et al. A new class of transformable kirigami metamaterials for reconfigurable electromagnetic systems[J]. Scientific Reports, 2023, 13(1): 1219. doi: 10.1038/s41598-022-27291-8.
|
[115] |
CHEN Xiqiao, LI Wei, WU Zhuang, et al. Origami-based microwave absorber with a reconfigurable bandwidth[J]. Optics Letters, 2021, 46(6): 1349–1352. doi: 10.1364/OL.419093.
|
[116] |
ZHU Zhibiao, LI Yongfeng, QIN Zhe, et al. Miura origami based reconfigurable polarization converter for multifunctional control of electromagnetic waves[J]. Photonics Research, 2024, 12(3): 581–586. doi: 10.1364/PRJ.504027.
|
[117] |
WANG Zhongbao, CHEN Qiang, MA Yanli, et al. Design of thermal-switchable absorbing metasurface based on vanadium dioxide[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2302–2306. doi: 10.1109/LAWP.2022.3186802.
|
[118] |
LIU Jianjun and FAN Lanlan. Development of a tunable terahertz absorber based on temperature control[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1681–1685. doi: 10.1002/mop.32211.
|
[119] |
LIU Xingbo, WANG Qiu, ZHANG Xueqian, et al. Thermally dependent dynamic meta‐holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 2019, 7(12): 1900175. doi: 10.1002/adom.201900175.
|
[120] |
LU Xueguang, DONG Bowen, ZHU Hongfu, et al. Two-channel VO2 memory meta-device for terahertz waves[J]. Nanomaterials, 2021, 11(12): 3409. doi: 10.3390/nano11123409.
|
[121] |
LI Zenglin, WANG Wei, DENG Shaoxuan, et al. Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces[J]. Optics Letters, 2022, 47(2): 441–444. doi: 10.1364/OL.447377.
|
[122] |
GUO Linyang, MA Xiaohui, CHANG Zhaoqing, et al. Tunable a temperature-dependent GST-based metamaterial absorber for switching and sensing applications[J]. Journal of Materials Research and Technology, 2021, 14: 772–779. doi: 10.1016/j.jmrt.2021.06.080.
|
[123] |
CHEN Jiajia, CHEN Xieyu, LIU Kuan, et al. A thermally switchable bifunctional metasurface for broadband polarization conversion and absorption based on phase-change material[J]. Advanced Photonics Research, 2022, 3(9): 2100369. doi: 10.1002/adpr.202100369.
|
[124] |
SONG Yipeng and XU Peipeng. Design of ultra-low insertion loss active transverse electric-pass polarizer based Ge2Sb2Te5 on silicon waveguide[J]. Optics Communications, 2018, 426: 30–34. doi: 10.1016/j.optcom.2018.05.034.
|
[125] |
ZHANG Shijie, WANG Qi, ZENG Ruimei, et al. Thermal tuning nanoprinting based on liquid crystal tunable dual-layered metasurfaces for optical information encryption[J]. Optics Express, 2024, 32(3): 4639–4649. doi: 10.1364/OE.514603.
|
[126] |
SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308–4315. doi: 10.1021/acsnano.5b00723.
|
[127] |
SHARMA M and ELLENBOGEN T. An all-optically controlled liquid-crystal plasmonic metasurface platform[J]. Laser & Photonics Reviews, 2020, 14(11): 2000253. doi: 10.1002/lpor.202000253.
|
[128] |
RAHMANI M, XU Lei, MIROSHNICHENKO A E, et al. Reversible thermal tuning of all-dielectric metasurfaces[J]. Advanced Functional Materials, 2017, 27(31): 1700580. doi: 10.1002/adfm.201700580.
|
[129] |
YANG Daquan, ZHANG Chao, LI Xiaogang, et al. InSb-enhanced thermally tunable terahertz silicon metasurfaces[J]. IEEE Access, 2019, 7: 95087–95093. doi: 10.1109/ACCESS.2019.2928225.
|
[130] |
IYER P P, PENDHARKAR M, PALMSTRØM C J, et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates[J]. Nature Communications, 2017, 8(1): 472. doi: 10.1038/s41467-017-00615-3.
|
[131] |
SHIRMANESH G K, SOKHOYAN R, WU P C, et al. Electro-optically tunable multifunctional metasurfaces[J]. ACS Nano, 2020, 14(6): 6912–6920. doi: 10.1021/acsnano.0c01269.
|
[132] |
LI Jianxiong, YU Ping, ZHANG Shuang, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3.
|
[133] |
LI Yue, LIN Jing, GUO Huijie, et al. A tunable metasurface with switchable functionalities: From perfect transparency to perfect absorption[J]. Advanced Optical Materials, 2020, 8(6): 1901548. doi: 10.1002/adom.201901548.
|
[134] |
LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23554–23564. doi: 10.1021/acsami.0c02467.
|
[135] |
KE Junchen, DAI Junyan, ZHANG Junwei, et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases[J]. Light: Science & Applications, 2022, 11(1): 273. doi: 10.1038/s41377-022-00973-8.
|
[136] |
SONG Xinyun, YANG Weixu, QU Kai, et al. Switchable metasurface for nearly perfect reflection, transmission, and absorption using PIN diodes[J]. Optics Express, 2021, 29(18): 29320–29328. doi: 10.1364/OE.436261.
|
[137] |
LIAO Jianming, GUO Shaojun, YUAN Liming, et al. Independent manipulation of reflection amplitude and phase by a single-layer reconfigurable metasurface[J]. Advanced Optical Materials, 2022, 10(4): 2101551. doi: 10.1002/adom.202101551.
|
[138] |
HUANG Cheng, ZHANG Changlei, YANG Jianning, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485.
|
[139] |
JEONG H, LE D H, LIM D, et al. Reconfigurable metasurfaces for frequency selective absorption[J]. Advanced Optical Materials, 2020, 8(13): 1902182. doi: 10.1002/adom.201902182.
|
[140] |
PHON R, LEE M, LOR C, et al. Multifunctional reflective metasurface to independently and simultaneously control amplitude and phase with frequency tunability[J]. Advanced Optical Materials, 2023, 11(14): 2202943. doi: 10.1002/adom.202202943.
|
[141] |
ZHANG Xinge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382.
|
[142] |
GHOSH S and SRIVASTAVA K V. Polarization-insensitive single-/dual-band tunable absorber with independent tuning in wide frequency range[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4903–4908. doi: 10.1109/TAP.2017.2731381.
|
[143] |
ZHU Ruichao, WANG Jiafu, DING Chang, et al. Multi-field-sensing metasurface with robust self-adaptive reconfigurability[J]. Nanophotonics, 2023, 12(7): 1337–1345. doi: 10.1515/nanoph-2023-0050.
|
[144] |
ZHANG Jin, WEI Xingzhan, RUKHLENKO I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 2020, 7(1): 265–271. doi: 10.1021/acsphotonics.9b01532.
|
[145] |
KIM Y, WU P C, SOKHOYAN R, et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J]. Nano Letters, 2019, 19(6): 3961–3968. doi: 10.1021/acs.nanolett.9b01246.
|
[146] |
PARK D J, SHIN J H, PARK K H, et al. Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on VO2[J]. Optics Express, 2018, 26(13): 17397–17406. doi: 10.1364/OE.26.017397.
|
[147] |
FOROUZMAND A, SALARY M M, SHIRMANESH G K, et al. Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide[J]. Nanophotonics, 2019, 8(3): 415–427. doi: 10.1515/nanoph-2018-0176.
|
[148] |
ZHANG Jinqiannan, YANG Jingyi, SCHELL M, et al. Gate-tunable optical filter based on conducting oxide metasurface heterostructure[J]. Optics Letters, 2019, 44(15): 3653–3656. doi: 10.1364/OL.44.003653.
|
[149] |
LUO Wei, ABBASI S A, ZHU Shaodi, et al. Electrically switchable and tunable infrared light modulator based on functional graphene metasurface[J]. Nanophotonics, 2023, 12(9): 1797–1807. doi: 10.1515/nanoph-2023-0048.
|
[150] |
YAO Wei, TANG Linlong, NONG Jinpeng, et al. Electrically tunable graphene metamaterial with strong broadband absorption[J]. Nanotechnology, 2021, 32(7): 075703. doi: 10.1088/1361-6528/abc44f.
|
[151] |
CAI Ziqiang and LIU Yongmin. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces[J]. Advanced Optical Materials, 2022, 10(6): 2102135. doi: 10.1002/adom.202102135.
|
[152] |
XU Zhixiang, NI Cheng, CHENG Yongzhi, et al. Photo-excited metasurface for tunable terahertz reflective circular polarization conversion and anomalous beam deflection at two frequencies independently[J]. Nanomaterials, 2023, 13(12): 1846. doi: 10.3390/nano13121846.
|
[153] |
ZHOU Qiangguo, LI Yongzhen, WU Tuntan, et al. Terahertz metasurface modulators based on photosensitive silicon[J]. Laser & Photonics Reviews, 2023, 17(6): 2200808. doi: 10.1002/lpor.202200808.
|
[154] |
ULLAH A, WANG Y C, YEASMIN S, et al. Reconfigurable photoinduced terahertz wave modulation using hybrid metal-silicon metasurface[J]. Optics Letters, 2022, 47(11): 2750–2753. doi: 10.1364/OL.457573.
|
[155] |
KIM J, CARNEMOLLA E G, DEVAULT C, et al. Dynamic control of nanocavities with tunable metal oxides[J]. Nano Letters, 2018, 18(2): 740–746. doi: 10.1021/acs.nanolett.7b03919.
|
[156] |
SAHA S, DUTTA A, DEVAULT C, et al. Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics[J]. Materials Today, 2021, 43: 27–36. doi: 10.1016/j.mattod.2020.10.023.
|
[157] |
WU Yuhao, CHOWDHURY S N, KANG Lei, et al. Zinc oxide (ZnO) hybrid metasurfaces exhibiting broadly tunable topological properties[J]. Nanophotonics, 2022, 11(17): 3933–3942. doi: 10.1515/nanoph-2022-0115.
|
[158] |
YANG Yuanmu, KELLEY K, SACHET E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nature Photonics, 2017, 11(6): 390–395. doi: 10.1038/nphoton.2017.64.
|
[159] |
ZHANG Xinge, JIANG Weixiang, and CUI Tiejun. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Applied Physics Letters, 2018, 113(9): 091601. doi: 10.1063/1.5045718.
|
[160] |
ZHANG Xinge, JIANG Weixiang, JIANG Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165–171. doi: 10.1038/s41928-020-0380-5.
|
[161] |
ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 2022, 4(2): 025001. doi: 10.1117/1.AP.4.2.025001.
|
[162] |
CHEN Lei, NIE Qianfan, RUAN Ying, et al. Light-controllable metasurface for microwave wavefront manipulation[J]. Optics Express, 2020, 28(13): 18742–18749. doi: 10.1364/OE.396802.
|
[163] |
CHEN Lei, YE Fuju, CUO Mu, et al. Ultraviolet-sensing metasurface for programmable electromagnetic scattering field manipulation by combining light control with a microwave field[J]. Optics Express, 2022, 30(11): 19212–19221. doi: 10.1364/OE.454111.
|
[164] |
LI Ruijie, LIU Haixia, XU Peng, et al. Light-controlled metasurface with a controllable range of reflection phase modulation[J]. Journal of Physics D: Applied Physics, 2022, 55(22): 225302. doi: 10.1088/1361-6463/ac5555.
|
[165] |
MIAO Siyu and LIN Fenghan. Light-controlled large-scale wirelessly reconfigurable microstrip reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1613–1622. doi: 10.1109/TAP.2022.3230551.
|
[166] |
HU Yuze, HAO Hao, ZHANG Jun, et al. Anisotropic temporal metasurfaces for tunable ultrafast photoactive switching dynamics[J]. Laser & Photonics Reviews, 2021, 15(10): 2100244. doi: 10.1002/lpor.202100244.
|
[167] |
JUNG I, JANG H J, HAN S, et al. Magnetic modulation of surface plasmon resonance by tailoring magnetically responsive metallic block in multisegment nanorods[J]. Chemistry of Materials, 2015, 27(24): 8433–8441. doi: 10.1021/acs.chemmater.5b04016.
|
[168] |
ARMELLES G, BERGAMINI L, ZABALA N, et al. Metamaterial platforms for spintronic modulation of mid-infrared response under very weak magnetic field[J]. ACS Photonics, 2018, 5(10): 3956–3961. doi: 10.1021/acsphotonics.8b00866.
|
[169] |
BI Yu, HUANG Lingling, LI Tuo, et al. Active metasurface via magnetic control for tri-channel polarization multiplexing holography[J]. Chinese Optics Letters, 2024, 22(4): 043601. doi: 10.3788/COL202422.043601.
|
[170] |
JU Cheng, WU Ruixin, LI Zhen, et al. Manipulating electromagnetic wave propagating non-reciprocally by a chain of ferriterods[J]. Optics Express, 2017, 25(18): 22096–22103. doi: 10.1364/OE.25.022096.
|
[171] |
GUO Yunsheng, HOU Xiaojuan, LV Xiaolong, et al. Tunable artificial microwave blackbodies based on metasurfaces[J]. Optics Express, 2017, 25(21): 25879–25885. doi: 10.1364/OE.25.025879.
|
[172] |
ZHANG Yihan, WU Gaojian, and HUANG Chengping. Magnetic tuning of metasurfaces using ultrathin flexible metals bonded with ferrite patches[J]. Journal of Lightwave Technology, 2024, 42(9): 3277–3282. doi: 10.1109/JLT.2024.3351887.
|
[173] |
LIU Peng, CHEN Xing, XU Wangdong, et al. Magnetically controlled multifunctional membrane acoustic metasurface[J]. Journal of Applied Physics, 2020, 127(18): 185104. doi: 10.1063/1.5145289.
|
[174] |
GUO Jinying, WANG Teng, ZHAO Huan, et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced Optical Materials, 2019, 7(10): 1801696. doi: 10.1002/adom.201801696.
|
[175] |
DU Zhiqiang, HE Canhui, XIN Jinhao, et al. Terahertz dynamic multichannel holograms generated by spin-multiplexing reflective metasurface[J]. Optics Express, 2024, 32(1): 248–259. doi: 10.1364/OE.510046.
|
[176] |
LI Tianyou, WEI Qunshuo, REINEKE B, et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels[J]. Optics Express, 2019, 27(15): 21153–21162. doi: 10.1364/OE.27.021153.
|
[177] |
LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9.
|
[178] |
FENG Rui, RATNI B, YI Jianjia, et al. Reprogrammable digital holograms and multibit spatial energy modulation using a reflective metasurface[J]. ACS Applied Electronic Materials, 2021, 3(12): 5272–5277. doi: 10.1021/acsaelm.1c00786.
|
[179] |
HU Yuan, CHEN Shaonan, SHI Yan, et al. Space-time coding metasurface for multifunctional holographic imaging[J]. Advanced Materials Technologies, 2024, 9(12): 2302164. doi: 10.1002/admt.202302164.
|
[180] |
ZHANG M, ZHANG W, LIU A Q, et al. Tunable polarization conversion and rotation based on a reconfigurable metasurface[J]. Scientific Reports, 2017, 7(1): 12068. doi: 10.1038/s41598-017-11953-z.
|
[181] |
YU Ping, LI Jianxiong, and LIU Na. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Letters, 2021, 21(15): 6690–6695. doi: 10.1021/acs.nanolett.1c02318.
|
[182] |
FENG Jinlong, CHEN Xiepeng, WU Linsheng, et al. Broadband electrically tunable linear polarization converter based on a graphene metasurface[J]. Optics Express, 2023, 31(2): 1420–1431. doi: 10.1364/OE.477907.
|
[183] |
HOU Yanzhao, ZHANG Chao, and WANG Chengrui. High-efficiency and tunable terahertz linear-to-circular polarization converters based on all-dielectric metasurfaces[J]. IEEE Access, 2020, 8: 140303–140309. doi: 10.1109/ACCESS.2020.3007838.
|
[184] |
YU Fuyuan, ZHU Jiabing, and SHEN Xiaobo. Tunable and reflective polarization converter based on single-layer vanadium dioxide-integrated metasurface in terahertz region[J]. Optical Materials, 2022, 123: 111745. doi: 10.1016/j.optmat.2021.111745.
|
[185] |
GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi: 10.1109/TAP.2018.2866636.
|
[186] |
YANG Zhengyi, KOU Na, YU Shixing, et al. Reconfigurable multifunction polarization converter integrated with PIN diode[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 557–560. doi: 10.1109/LMWC.2021.3064039.
|
[187] |
AFRIDI A, GIESELER J, MEYER N, et al. Ultrathin tunable optomechanical metalens[J]. Nano Letters, 2023, 23(7): 2496–2501. doi: 10.1021/acs.nanolett.2c04105.
|
[188] |
SHALAGINOV M Y, AN Sensong, ZHANG Yifei, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 2021, 12(1): 1225. doi: 10.1038/s41467-021-21440-9.
|
[189] |
ZHANG Zhaokun, QI Xiangqian, ZHANG Jianfa, et al. Graphene-enabled electrically tunability of metalens in the terahertz range[J]. Optics Express, 2020, 28(19): 28101–28112. doi: 10.1364/OE.401627.
|
[190] |
LIU Weiguang, HU Bin, HUANG Zongduo, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 2018, 6(7): 703–708. doi: 10.1364/PRJ.6.000703.
|
[191] |
ZHANG Yongai, LIN Chaofu, LIN Jianpu, et al. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane[J]. Optics Communications, 2018, 412: 114–120. doi: 10.1016/j.optcom.2017.12.008.
|
[192] |
BADLOE T, KIM I, KIM Y, et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths[J]. Advanced Science, 2021, 8(21): 2102646. doi: 10.1002/advs.202102646.
|
[193] |
KOMAR A, PANIAGUA-DOMÍNGUEZ P, MIROSHNICHENKO A, et al. Dynamic beam switching by liquid crystal tunable Dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742–1748. doi: 10.1021/acsphotonics.7b01343.
|
[194] |
KIM S I, PARK J, JEONG B G, et al. Two-dimensional beam steering with tunable metasurface in infrared regime[J]. Nanophotonics, 2022, 11(11): 2719–2726. doi: 10.1515/nanoph-2021-0664.
|
[195] |
HUANG Yaowei, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9): 5319–5325. doi: 10.1021/acs.nanolett.6b00555.
|
[196] |
WU P C, PALA R A, SHIRMANESH G K, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nature Communications, 2019, 10(1): 3654. doi: 10.1038/s41467-019-11598-8.
|
[197] |
HASHEMI M R M, YANG Shanghua, WANG Tongyu, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Scientific Reports, 2016, 6(1): 35439. doi: 10.1038/srep35439.
|
[198] |
ZHUANG Xiaolin, ZHANG Wei, WANG Kemeng, et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface[J]. Light: Science & Applications, 2023, 12(1): 14. doi: 10.1038/s41377-022-01046-6.
|
[199] |
ZHANG Kuang, YUAN Yueyi, ZHANG Dawei, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region[J]. Optics Express, 2018, 26(2): 1351–1360. doi: 10.1364/OE.26.001351.
|
[200] |
LI Sijia, LI Zhouyue, LIU Xiaobin, et al. Transmissive digital coding metasurfaces for polarization-dependent dual-mode quad orbital angular momentum beams[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23690–23700. doi: 10.1021/acsami.3c04082.
|
[201] |
TANG Pengcheng, SI Liming, YUAN Qianqian, et al. Dynamic generation of multiplexed vortex beams by a space-time-coding metasurface[J]. Photonics Research, 2025, 13(1): 225–234. doi: 10.1364/PRJ.543744.
|
[202] |
MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8(1): 98. doi: 10.1038/s41377-019-0205-3.
|
[203] |
WANG Haipeng, LI Yunbo, LI He, et al. Intelligent metasurface with frequency recognition for adaptive manipulation of electromagnetic wave[J]. Nanophotonics, 2022, 11(7): 1401–1411. doi: 10.1515/nanoph-2021-0799.
|
[204] |
JIANG Ruizhe, MA Qian, GU Ze, et al. Simultaneously intelligent sensing and beamforming based on an adaptive information metasurface[J]. Advanced Science, 2024, 11(7): 2306181. doi: 10.1002/advs.202306181.
|
[205] |
GAO Chengjing, LAI Tingjun, PENG Liang, et al. Multifunctional intelligent reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2024, 16(41): 55675–55683. doi: 10.1021/acsami.4c09944.
|
[206] |
SHE Ying, JI Chen, HUANG Cheng, et al. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching[J]. Photonics Research, 2022, 10(3): 769–776. doi: 10.1364/PRJ.450297.
|
[207] |
QIAN Chao, ZHENG Bin, SHEN Yichen, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383–390. doi: 10.1038/s41566-020-0604-2.
|
[208] |
LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 2019, 8(1): 97. doi: 10.1038/s41377-019-0209-z.
|