Dai Da-hai, Liao Bin, Xiao Shun-ping, Wang Xue-song. Advancements on Radar Polarization Information Acquisition and Processing[J]. Journal of Radars, 2016, 5(2): 143-155. doi: 10.12000/JR15103
Citation: FAN Lei, YANG Qi, WANG Hongqiang, et al. Terahertz-ViSAR-based imaging of passive jamming objects[J]. Journal of Radars, 2025, 14(2): 486–500. doi: 10.12000/JR24174

Terahertz-ViSAR-based Imaging of Passive Jamming Objects

DOI: 10.12000/JR24174 CSTR: 32380.14.JR24174
Funds:  The National Natural Science Foundation of China (62201591, 62035014), Science and Technology Innovation Program of Hunan Province (2024RC3143)
More Information
  • Corresponding author: WANG Hongqiang, wanghongqiang@nudt.edu.cn
  • Received Date: 2024-08-31
  • Rev Recd Date: 2024-11-10
  • Available Online: 2024-11-14
  • Publish Date: 2024-12-06
  • Imaging of passive jamming objects has been a hot topic in radar imaging and countermeasures research, which directly affects the detection and recognition capabilities of radar targets. In the microwave band, the long dwell time required to generate a single image with desired azimuthal resolution makes it difficult to directly distinguish passive jamming objects based on imaging results. In addition, there is a lack of time-dimensional resolution. In comparison, terahertz imaging systems require a shorter synthetic aperture to achieve the same azimuthal resolution, making it easier to obtain low-latency, high-resolution, and high-frame-rate imaging results. Hence, terahertz radar has considerable potential in Video Synthetic Aperture Radar (ViSAR) technology. First, the aperture division and imaging resolutions of airborne terahertz ViSAR are briefly analyzed. Subsequently, imaging results and characteristics of stationary passive jamming objects, such as corner reflector arrays and camouflage mats, are explored before and after motion compensation. Further, the phenomenon that camouflage mats with fluctuating grids exhibit roughness in the terahertz band is demonstrated, exhibiting the special scattering characteristics of the terahertz band. Next, considering rotating corner reflectors as an example of moving passive jamming objects, their characteristics regarding suppressive interference are analyzed. Considering that stationary scenes feature similarity under adjacent apertures, rotating corner reflectors can be directly detected by incoherent image subtraction after inter-frame image and amplitude registrations, followed by the extraction of signals of interest and non-parametrical compensation. Currently, few field experiments regarding the imaging of passive jamming objects using terahertz ViSAR are being reported. Airborne field experiments have been performed to effectively demonstrate the high-resolution and high-frame-rate imaging capabilities of terahertz ViSAR

     

  • [1]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data[M]. Boston: Artech House, 2005: 13–78.
    [2]
    李超, 李悦丽, 安道祥, 等. 基于视觉注意机制的UWB SAR叶簇隐蔽目标变化检测[J]. 电子学报, 2016, 44(1): 39–45. doi: 10.3969/j.issn.0372-2112.2016.01.007.

    LI Chao, LI Yueli, AN Daoxiang, et al. UWB SAR change detection of foliage-concealed targets based on visual attention[J]. Acta Electronica Sinica, 2016, 44(1): 39–45. doi: 10.3969/j.issn.0372-2112.2016.01.007.
    [3]
    SONG Juyoung, KIM D J, HWANG J H, et al. Effective vessel recognition in high resolution SAR images using quantitative and qualitative training data enhancement from target velocity phase refocusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5201714. doi: 10.1109/TGRS.2023.3346171.
    [4]
    ZHU Xiaoxiang and BAMLER R. Very high resolution spaceborne SAR tomography in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4296–4308. doi: 10.1109/TGRS.2010.2050487.
    [5]
    邓彬, 吴称光, 秦玉亮, 等. 合成孔径雷达微动目标指示(SAR/MMTI)研究进展[J]. 电子学报, 2013, 41(12): 2436–2442. doi: 10.3969/j.issn.0372-2112.2013.12.018.

    DENG Bin, WU Chengguang, QIN Yuliang, et al. Advances in synthetic aperture radar micro-motion target indication (SAR/MMTI)[J]. Acta Electronica Sinica, 2013, 41(12): 2436–2442. doi: 10.3969/j.issn.0372-2112.2013.12.018.
    [6]
    WANG Qi, PEPIN M, WRIGHT A, et al. Reduction of vibration-induced artifacts in synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3063–3073. doi: 10.1109/TGRS.2013.2269138.
    [7]
    FAN Lei, WANG Hongqiang, YANG Qi, et al. THz-ViSAR-Oriented fast indication and imaging of rotating targets based on nonparametric method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5217515. doi: 10.1109/TGRS.2024.3427653.
    [8]
    陈思伟, 崔兴超, 李铭典, 等. 基于深度CNN模型的SAR图像有源干扰类型识别方法[J]. 雷达学报, 2022, 11(5): 897–908. doi: 10.12000/JR22143.

    CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143.
    [9]
    孙光才, 白雪茹, 周峰, 等. 一种新的无源压制性SAR干扰方法[J]. 电子与信息学报, 2009, 31(3): 610–613. doi: 10.3724/SP.J.1146.2007.01885.

    SUN Guangcai, BAI Xueru, ZHOU Feng, et al. A new passive barrage jamming method for SAR[J]. Journal of Electronics & Information Technology, 2009, 31(3): 610–613. doi: 10.3724/SP.J.1146.2007.01885.
    [10]
    全斯农, 范晖, 代大海, 等. 一种基于精细极化目标分解的舰船箔条云识别方法[J]. 雷达学报, 2021, 10(1): 61–73. doi: 10.12000/JR20123.

    QUAN Sinong, FAN Hui, DAI Dahai, et al. Recognition of ships and chaff clouds based on sophisticated polarimetric target decomposition[J]. Journal of Radars, 2021, 10(1): 61–73. doi: 10.12000/JR20123.
    [11]
    吴国庆, 王罗胜斌, 庞晨, 等. 雷达极化域变焦角反组合体对抗方法: 抗冲淡式干扰[J]. 电子学报, 2022, 50(12): 2969–2983. doi: 10.12263/DZXB.20220979.

    WU Guoqing, WANG Luoshengbin, PANG Chen, et al. Radar polarization modulation countermeasures for combined corner reflector: Anti diluted jamming[J]. Acta Electronica Sinica, 2022, 50(12): 2969–2983. doi: 10.12263/DZXB.20220979.
    [12]
    李玉鹏, 王吉军, 苏荣华, 等. 吸收散射型伪装遮障遮蔽性能仿真分析[J]. 防护工程, 2021, 43(2): 68–72. doi: 10.3969/j.issn.1674-1854.2021.02.010.

    LI Yupeng, WANG Jijun, SU Ronghua, et al. Simulation analysis of the shielding performance of absorption-scattering camouflage barrier[J]. Protective Engineering, 2021, 43(2): 68–72. doi: 10.3969/j.issn.1674-1854.2021.02.010.
    [13]
    LI Xiang, DENG Bin, QIN Yuliang, et al. The influence of target micromotion on SAR and GMTI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2738–2751. doi: 10.1109/TGRS.2011.2104965.
    [14]
    王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. doi: 10.12000/JR16039.

    WANG Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. doi: 10.12000/JR16039.
    [15]
    FAN Lei, WANG Hongqiang, YANG Qi, et al. High-quality airborne terahertz video SAR imaging based on echo-driven robust motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 2001817. doi: 10.1109/TGRS.2024.3357697.
    [16]
    LI Yuliang, LIU Jialu, LI Jin, et al. An extend Kaiser distribution optimization phase compensation algorithm for terahertz airborne SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5215815. doi: 10.1109/TGRS.2024.3420788.
    [17]
    ZHANG Ye, WANG Hongqiang, ZENG Yang, et al. Three-dimensional surface reconstruction of space targets using a terahertz MIMO linear array based on multilayer wideband frequency interferometry techniques[J]. IEEE Transactions on Terahertz Science and Technology, 2021, 11(4): 353–366. doi: 10.1109/TTHZ.2021.3067171.
    [18]
    LI Yuliang, MIN Rui, LI Jin, et al. Terahertz circular SAR imaging algorithm based on the extraction of scattering characteristics of target structures[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3504905. doi: 10.1109/LGRS.2024.3379171.
    [19]
    FAN Lei, WANG Hongqiang, YANG Qi, et al. High frame-rate and low-latency video SAR based on robust Doppler parameters estimation in the terahertz regime[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5207016. doi: 10.1109/TGRS.2023.3271310.
    [20]
    吴涵, 吴福伟, 尚士泽, 等. 太赫兹视频SAR多普勒中心估计方法[J]. 太赫兹科学与电子信息学报, 2022, 20(11): 1123–1129. doi: 10.11805/TKYDA2021295.

    WU Han, WU Fuwei, SHANG Shize, et al. Doppler centroid frequency estimation method based on THz video-SAR[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(11): 1123–1129. doi: 10.11805/TKYDA2021295.
    [21]
    DAMINI A, BALAJI B, PARRY C, et al. A videoSAR mode for the x-band wideband experimental airborne radar[C]. SPIE 7699, Algorithms for Synthetic Aperture Radar Imagery XVII, Orlando, USA, 2010: 76990E. doi: 10.1117/12.855376.
    [22]
    WELLS L, SORENSEN K, DOERRY A, et al. Developments in SAR and IFSAR systems and technologies at sandia national laboratories[C]. 2003 IEEE Aerospace Conference Proceedings, Big Sky, USA, 2003: 1085–1095. doi: 10.1109/AERO.2003.1235522.
    [23]
    FRIOUD M, WAHLEN A, WELLIG P, et al. Processing of MIRANDA35 FMCW-SAR data using a time-domain algorithm[C]. 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1–4.
    [24]
    PALM S, SOMMER R, JANSSEN D, et al. Airborne circular W-band SAR for multiple aspect urban site monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6996–7016. doi: 10.1109/TGRS.2019.2909949.
    [25]
    KIM S H, FAN R, and DOMINSKI F. ViSAR: A 235 GHz radar for airborne applications[C]. 2018 IEEE Radar Conference, Oklahoma, USA, 2018: 1549–1554. doi: 10.1109/RADAR.2018.8378797.
    [26]
    王宏强, 邓彬, 秦玉亮. 太赫兹雷达技术[J]. 雷达学报, 2018, 7(1): 1–21. doi: 10.12000/JR17107.

    WANG Hongqiang, DENG Bin, and QIN Yuliang. Review of terahertz radar technology[J]. Journal of Radars, 2018, 7(1): 1–21. doi: 10.12000/JR17107.
    [27]
    XING Mengdao, JIANG Xiuwei, WU Renbiao, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2870–2883. doi: 10.1109/TGRS.2009.2015657.
    [28]
    GAO Jingkun, QIN Yuliang, DENG Bin, et al. Terahertz wide-angle imaging and analysis on plane-wave criteria based on inverse synthetic aperture techniques[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(4): 373–393. doi: 10.1007/s10762-016-0249-x.
    [29]
    丁金闪, 仲超, 温利武, 等. 视频合成孔径雷达双域联合运动目标检测方法[J]. 雷达学报, 2022, 11(3): 313–323. doi: 10.12000/JR22036.

    DING Jinshan, ZHONG Chao, WEN Liwu, et al. Joint detection of moving target in video synthetic aperture radar[J]. Journal of Radars, 2022, 11(3): 313–323. doi: 10.12000/JR22036.
    [30]
    KHOSRAVI M R and SAMADI S. Mobile multimedia computing in cyber-physical surveillance services through UAV-borne Video-SAR: A taxonomy of intelligent data processing for IoMT-enabled radar sensor networks[J]. Tsinghua Science and Technology, 2022, 27(2): 288–302. doi: 10.26599/TST.2021.9010013.
    [31]
    赵雨露, 张群英, 李超, 等. 视频合成孔径雷达振动误差分析及补偿方案研究[J]. 雷达学报, 2015, 4(2): 230–239. doi: 10.12000/JR14153.

    ZHAO Yulu, ZHANG Qunying, LI Chao, et al. Vibration error analysis and motion compensation of video synthetic aperture radar[J]. Journal of Radars, 2015, 4(2): 230–239. doi: 10.12000/JR14153.
    [32]
    李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报, 2022, 11(6): 943–973. doi: 10.12000/JR22119.

    LI Yachao, WANG Jiadong, ZHANG Tinghao, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11(6): 943–973. doi: 10.12000/JR22119.
  • Relative Articles

    [1]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [2]LYU Zexin, QIU Xiaolan, ZHANG Zhe, DING Chibiao. Error Analysis of Polarimetric Interferometric SAR under Different Processing Modes in Urban Areas[J]. Journal of Radars, 2022, 11(4): 600-617. doi: 10.12000/JR22059
    [3]LI Yueli, LI Zesen, WANG Jian, LIU Ke, ZHOU Zhimin. Modification and Compensation of the Line-of-Sight Motion Error for Multirotor UAV SAR[J]. Journal of Radars, 2022, 11(6): 1061-1080. doi: 10.12000/JR22082
    [4]GAO Ming, QIU Xiaolan, MENG Dadi, HUANG Lijia, DING Chibiao. Geolocation Error Transfer Model and Trajectory Calibration Method for Airborne SAR Considering Motion Compensation Residual Error[J]. Journal of Radars, 2021, 10(4): 646-655. doi: 10.12000/JR21018
    [5]ZHANG Lingzhi, LIU Feifeng, HU Cheng. Optimization Method and Analysis of Data Acquisition Strategy Based on Interference SAR with GNSS Transmitters[J]. Journal of Radars, 2019, 8(5): 624-630. doi: 10.12000/JR19065
    [6]Liu Yunlong, Li Yanlei, Zhou Liangjiang, Liang Xingdong. A Fast Precise Geometric Calibration Method for Airborne SAR[J]. Journal of Radars, 2016, 5(4): 419-424. doi: 10.12000/JR16064
    [7]Yin Qiang, Li Yang, Huang Ping-ping, Lin Yun, Hong Wen. Analysis of InSAR Coherence Loss Caused by Soil Moisture Variation(in English)[J]. Journal of Radars, 2015, 4(6): 689-697. doi: 10.12000/JR15075
    [8]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [9]Wu Qin-xia, Liang Xing-dong, Li Yan-lei, Zhou Liang-jiang. Analysis of the Residual Motion Error Impact on Airborne Multiband SAR Image Registration[J]. Journal of Radars, 2015, 4(2): 209-216. doi: 10.12000/JR14065
    [10]Xu Li-ying, Li Shi-qiang, Deng Yun-kai, Wang Yu. Improved Three-stage Algorithm of Forest Height Retrieval with PolInSAR[J]. Journal of Radars, 2014, 3(1): 28-34. doi: 10.3724/SP.J.1300.2014.13089
    [11]Liu Zhong-sheng, Wang Bing-nan, Xiang Mao-sheng, Chen Long-yong. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation[J]. Journal of Radars, 2014, 3(2): 183-191. doi: 10.3724/SP.J.1300.2014.14015
    [12]Deng Yuan, Li Yin-wei, Xiang Mao-sheng, Wei Li-deng. Performance Analysis of Measurement Inaccuracies of IMU/GPS on Airborne Repeat-pass Interferometric SAR in the Presence of Squint[J]. Journal of Radars, 2014, 3(4): 428-438. doi: 10.3724/SP.J.1300.2014.13141
    [13]Mao Yong-fei, Wang Xiao-jie, Xiang Mao-sheng. Joint Three-dimensional Location Algorithm for Airborne Interferometric SAR System[J]. Journal of Radars, 2013, 2(1): 60-67. doi: 10.3724/SP.J.1300.2012.20107
    [14]Meng Da-di, Hu Yu-xin, Shi Tao, Sun Rui, Li Xiao-bo. Airborne SAR Real-time Imaging Algorithm Design and Implementation with CUDA on NVIDIA GPU[J]. Journal of Radars, 2013, 2(4): 481-491. doi: 10.3724/SP.J.1300.2013.13056
    [15]Jia Ying-xin, Wang Yan-fei. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System[J]. Journal of Radars, 2013, 2(1): 77-85. doi: 10.3724/SP.J.1300.2012.20100
    [16]Li Yin-wei, Wei Li-deng, Xiang Mao-sheng. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR[J]. Journal of Radars, 2013, 2(4): 492-498. doi: 10.3724/SP.J.1300.2013.13040
    [17]Li Yan-lei, Liang Xing-dong, Ding Chi-biao. Error Comparison and Analysis of the Two-pass and Three-pass Approaches in Airborne D-InSAR[J]. Journal of Radars, 2013, 2(3): 326-333. doi: 10.3724/SP.J.1300.2013.13034
    [18]Zhong Xue-lian, Chen Ren-yuan, Yang Ran, Wu Tao. Two Factors Influencing Residual Motion Estimation in Airborne SAR Images with MTPT[J]. Journal of Radars, 2013, 2(2): 180-186. doi: 10.3724/SP.J.1300.2012.20095
    [19]Lin Xue, Li Fang-fang, Hu Dong-hui, Ding Chi-biao. Performance Analysis of Flat Surface Assumption and Residual Motion Errors on Airborne Repeat-pass InSAR[J]. Journal of Radars, 2013, 2(3): 334-347. doi: 10.3724/SP.J.1300.2013.13013
    [20]He Li-ping, Li Jun-xing, Liu Ming. Structural Modeling and Analysis on Dynamic Characteristics[J]. Journal of Radars, 2012, 1(2): 203-208. doi: 10.3724/SP.J.1300.2013.20018
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.5 %FULLTEXT: 34.5 %META: 59.0 %META: 59.0 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.4 %其他: 12.4 %其他: 2.1 %其他: 2.1 %China: 0.8 %China: 0.8 %上海: 1.3 %上海: 1.3 %九江: 0.5 %九江: 0.5 %保德曼: 0.3 %保德曼: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 8.7 %北京: 8.7 %十堰: 0.8 %十堰: 0.8 %南京: 4.7 %南京: 4.7 %南宁: 0.3 %南宁: 0.3 %南昌: 0.5 %南昌: 0.5 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.8 %天津: 0.8 %娄底: 0.5 %娄底: 0.5 %宁波: 0.3 %宁波: 0.3 %安康: 0.3 %安康: 0.3 %宣城: 0.3 %宣城: 0.3 %巴中: 0.3 %巴中: 0.3 %常州: 1.3 %常州: 1.3 %常德: 1.6 %常德: 1.6 %广州: 0.5 %广州: 0.5 %库比蒂诺: 0.3 %库比蒂诺: 0.3 %延安: 0.8 %延安: 0.8 %开封: 0.5 %开封: 0.5 %弗吉: 0.3 %弗吉: 0.3 %张家口: 14.7 %张家口: 14.7 %徐州: 0.3 %徐州: 0.3 %怀化: 0.5 %怀化: 0.5 %成都: 1.3 %成都: 1.3 %扬州: 0.3 %扬州: 0.3 %斯特灵: 0.3 %斯特灵: 0.3 %昆明: 1.8 %昆明: 1.8 %杭州: 0.8 %杭州: 0.8 %桂林: 0.8 %桂林: 0.8 %比萨省: 0.3 %比萨省: 0.3 %沈阳: 1.6 %沈阳: 1.6 %泰州: 0.5 %泰州: 0.5 %深圳: 0.5 %深圳: 0.5 %温州: 0.3 %温州: 0.3 %湖州: 1.3 %湖州: 1.3 %漯河: 1.8 %漯河: 1.8 %芒廷维尤: 17.6 %芒廷维尤: 17.6 %芝加哥: 0.8 %芝加哥: 0.8 %衢州: 1.1 %衢州: 1.1 %西宁: 3.7 %西宁: 3.7 %西安: 2.1 %西安: 2.1 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 0.3 %贵阳: 0.3 %迈阿密: 0.3 %迈阿密: 0.3 %邯郸: 0.8 %邯郸: 0.8 %重庆: 0.3 %重庆: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 2.9 %长沙: 2.9 %青岛: 0.3 %青岛: 0.3 %其他其他China上海九江保德曼兰州北京十堰南京南宁南昌台州合肥哈尔滨哥伦布嘉兴天津娄底宁波安康宣城巴中常州常德广州库比蒂诺延安开封弗吉张家口徐州怀化成都扬州斯特灵昆明杭州桂林比萨省沈阳泰州深圳温州湖州漯河芒廷维尤芝加哥衢州西宁西安诺沃克贵阳迈阿密邯郸重庆长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(249) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint