Turn off MathJax
Article Contents
LIU Changyu, ZHANG Hao, GENG Fanglin, et al. Dynamic demodulation algorithm for bio-radar sensors based on range tapper[J]. Journal of Radars, in press. doi: 10.12000/JR24151
Citation: LIU Changyu, ZHANG Hao, GENG Fanglin, et al. Dynamic demodulation algorithm for bio-radar sensors based on range tapper[J]. Journal of Radars, in press. doi: 10.12000/JR24151

Dynamic Demodulation Algorithm for Bio-radar Sensors Based on Range Tapper

DOI: 10.12000/JR24151
Funds:  The National Natural Science Foundation of China (62331025, U21A20447, 62071451), National Key Research and Development Project (2021YFC3002204), CAMS Innovation Fund for Medical Sciences (2019-I2M-5-019)
More Information
  • Corresponding author: FANG Zhen, zfang@mail.ie.ac.cn
  • Received Date: 2024-07-23
  • Rev Recd Date: 2024-10-08
  • Available Online: 2024-10-20
  • In non-inductive radar vital sign monitoring, frequency-modulated radars (such as Frequency Modulated Continuous Wave (FMCW) and Ultra WideBand (UWB)) are more effective than Continuous Wave (CW) radars at distinguishing targets from clutter in terms of distance. Using range Fourier transform, the heartbeat and breathing signals can be extracted from quasi-static targets across various distance intervals, thereby improving monitoring accuracy. However, the commonly used range Fast Fourier Transform (FFT) presents certain limitations: The breathing amplitude of the subject may cross the range bin boundary, compromising signal integrity, while breathing movements can cause amplitude modulation of physiological signals, hindering waveform recovery. To address these reasons, we propose an algorithm architecture featuring range tap reconstruction and dynamic demodulation. We tested the algorithm performance in simulations and experiments for the cross range bin cases. Simulation results indicate that processing signals crossing range bins with our algorithm improves the signal-to-noise ratio by 17±5 dB. In addition, experiments recorded Doppler Heartbeat Diagram (DHD) signals from eight subjects, comparing the consistency between the DHD signals and the ballistocardiogram. The root means square error of the C-C interval in the DHD signal relative to the J-J interval in the BallistoCardioGram (BCG) signal was 21.58±13.26 ms (3.40%±2.08%).

     

  • loading
  • [1]
    LIU Lin, YU Dongfang, LU Hongzhou, et al. Camera-based seismocardiogram for heart rate variability monitoring[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(5): 2794–2805. doi: 10.1109/JBHI.2024.3370394.
    [2]
    YU Xinchi, LAURENTIUS T, BOLLHEIMER C, et al. Noncontact monitoring of heart rate and heart rate variability in geriatric patients using photoplethysmography imaging[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1781–1792. doi: 10.1109/JBHI.2020.3018394.
    [3]
    XIAO Yanming, LIN J, BORIC-LUBECKE O, et al. A Ka-band low power Doppler radar system for remote detection of cardiopulmonary motion[C]. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005: 7151–7154. doi: 10.1109/IEMBS.2005.1616156.
    [4]
    GU Changzhan, LI Ruijiang, ZHANG Hualiang, et al. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(11): 3117–3123. doi: 10.1109/TBME.2012.2206591.
    [5]
    GU Changzhan, HE Yuchu, and ZHU Jiang. Noncontact vital sensing with a miniaturized 2.4 GHz circularly polarized Doppler radar[J]. IEEE Sensors Letters, 2019, 3(7): 3501204. doi: 10.1109/LSENS.2019.2924695.
    [6]
    ZHAO Heng, HONG Hong, MIAO Dongyu, et al. A noncontact breathing disorder recognition system using 2.4 GHz digital-IF Doppler radar[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 208–217. doi: 10.1109/JBHI.2018.2817258.
    [7]
    方震, 简璞, 张浩, 等. 基于FMCW雷达的非接触式医疗健康监测技术综述[J]. 雷达学报, 2022, 11(3): 499–516. doi: 10.12000/JR22019.

    FANG Zhen, JIAN Pu, ZHANG Hao, et al. Review of noncontact medical and health monitoring technologies based on FMCW radar[J]. Journal of Radars, 2022, 11(3): 499–516. doi: 10.12000/JR22019.
    [8]
    张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049.

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049.
    [9]
    AHMAD A, ROH J C, WANG Dan, et al. Vital signs monitoring of multiple people using a FMCW millimeter-wave sensor[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1450–1455. doi: 10.1109/RADAR.2018.8378778.
    [10]
    SHIN M, JUNG Y, KIM J, et al. FMCW Radar-based vital signal monitoring technique using adaptive range-bin selection[C]. 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149752.
    [11]
    RONG Yu and BLISS D W. Remote sensing for vital information based on spectral-domain harmonic signatures[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3454–3465. doi: 10.1109/TAES.2019.2917489.
    [12]
    PARK J H and YANG J R. Multiphase continuous-wave Doppler radar with multiarc circle fitting algorithm for small periodic displacement measurement[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 5135–5144. doi: 10.1109/TMTT.2020.3041264.
    [13]
    WANG Fukang, ZHONG Jixun, and SHIH J Y. IQ signal demodulation for noncontact vital sign monitoring using a CW Doppler radar: A review[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6(4): 449–460. doi: 10.1109/JERM.2022.3214753.
    [14]
    ZHANG Hao, JIAN Pu, YAO Yicheng, et al. Radar-Beat: Contactless beat-by-beat heart rate monitoring for life scenes[J]. Biomedical Signal Processing and Control, 2023, 86: 105360. doi: 10.1016/j.bspc.2023.105360.
    [15]
    DAI T K V, OLEKSAK K, KVELASHVILI T, et al. Enhancement of remote vital sign monitoring detection accuracy using multiple-input multiple-output 77 GHz FMCW radar[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6(1): 111–122. doi: 10.1109/JERM.2021.3082807.
    [16]
    WANG Guochao, GU Changzhan, INOUE T, et al. A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(11): 2812–2822. doi: 10.1109/TMTT.2014.2358572.
    [17]
    XU Zhaoyi, SHI Cong, ZHANG Tianfang, et al. Simultaneous monitoring of multiple people’s vital sign leveraging a single phased-MIMO radar[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6(3): 311–320. doi: 10.1109/JERM.2022.3143431.
    [18]
    MERCURI M, LORATO I R, LIU Yaohong, et al. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor[J]. Nature Electronics, 2019, 2(6): 252–262. doi: 10.1038/s41928-019-0258-6.
    [19]
    SACCO G, PIUZZI E, PITTELLA E, et al. An FMCW radar for localization and vital signs measurement for different chest orientations[J]. Sensors, 2020, 20(12): 3489. doi: 10.3390/s20123489.
    [20]
    SHANG Xiaolei, LIU Jian, and LI Jian. Multiple object localization and vital sign monitoring using IR-UWB MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4437–4450. doi: 10.1109/TAES.2020.2990817.
    [21]
    ADIB F, MAO Hongzi, KABELAC Z, et al. Smart homes that monitor breathing and heart rate[C]. The 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul Republic of Korea, 2015: 837–846. doi: 10.1145/2702123.270220.
    [22]
    ZHENG Tianyue, CHEN Zhe, CAI Chao, et al. V2iFi: In-vehicle vital sign monitoring via compact RF sensing[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2020, 4(2): 70. doi: 10.1145/3397321.
    [23]
    KHAN U M, RIGAZIO L, and SHAHZAD M. Contactless monitoring of PPG using radar[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022, 6(3): 123. doi: 10.1145/3550330.
    [24]
    HA U, ASSANA S, and ADIB F. Contactless seismocardiography via deep learning radars[C]. The 26th Annual International Conference on Mobile Computing and Networking, London, United Kingdom, 2020: 62. doi: 10.1145/3372224.3419982.
    [25]
    CHEN Jinbo, ZHANG Dongheng, WU Zhi, et al. Contactless electrocardiogram monitoring with millimeter wave radar[J]. IEEE Transactions on Mobile Computing, 2024, 23(1): 270–285. doi: 10.1109/TMC.2022.3214721.
    [26]
    ALIZADEH M, SHAKER G, DE ALMEIDA J C M, et al. Remote monitoring of human vital signs using mm-wave FMCW radar[J]. IEEE Access, 2019, 7: 54958–54968. doi: 10.1109/ACCESS.2019.2912956.
    [27]
    WANG Yong, WANG Wen, ZHOU Mu, et al. Remote monitoring of human vital signs based on 77-GHz mm-wave FMCW radar[J]. Sensors, 2020, 20(10): 2999. doi: 10.3390/s20102999.
    [28]
    PARK B K, BORIC-LUBECKE O, and LUBECKE V M. Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(5): 1073–1079. doi: 10.1109/TMTT.2007.895653.
    [29]
    WANG Jingyu, WANG Xiang, CHEN Lei, et al. Noncontact distance and amplitude-independent vibration measurement based on an extended DACM algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1): 145–153. doi: 10.1109/TIM.2013.2277530.
    [30]
    WANG Haoyu, CHEN Jinbo, ZHANG Dongheng, et al. Contactless radar heart rate variability monitoring via deep spatio-temporal modeling[C]. 2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Korea, Republic of, 2024: 111–115. doi: 10.1109/ICASSP48485.2024.10447570.
    [31]
    ZHANG Binbin, ZHANG Dongheng, SONG Ruiyuan, et al. RF-search: Searching unconscious victim in smoke scenes with RF-enabled drone[C]. The 29th Annual International Conference on Mobile Computing and Networking, Madrid, Spain, 2023: 91. doi: 10.1145/3570361.3613305.
    [32]
    IWR1642数据表、产品信息和支持|德州仪器TI.com.cn[EB/OL]. https://www.ti.com.cn/product/cn/IWR1642.
    [33]
    IWRL6432数据表、产品信息和支持|德州仪器TI.com.cn[EB/OL]. https://www.ti.com.cn/product/cn/IWRL6432.
    [34]
    TAMIYA H, MITANI A, ISAGO H, et al. Measurement of chest wall motion using a motion capture system with the one-pitch phase analysis method[J]. Scientific Reports, 2021, 11(1): 21497. doi: 10.1038/s41598-021-01033-8.
    [35]
    ZHU Chengkai, BALLE M, ZHANG Bin, et al. Doppler cardiogram detected by a V-band Doppler radar sensor[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 521–531. doi: 10.1109/TMTT.2021.3128591.
    [36]
    INAN O T, MIGEOTTE P F, PARK K S, et al. Ballistocardiography and seismocardiography: A review of recent advances[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(4): 1414–1427. doi: 10.1109/JBHI.2014.2361732.
    [37]
    DCA1000EVM evaluation board|TI.com[EB/OL]. https://www.ti.com/tool/DCA1000EVM.
    [38]
    PAN Jiapu and TOMPKINS W J. A real-time QRS detection algorithm[J]. IEEE Transactions on Biomedical Engineering, 1985, BME-32(3): 230–236. doi: 10.1109/TBME.1985.325532.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(146) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint