Volume 12 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
LIU Xinghua, WANG Guoyu, XU Zhenhai, et al. Review of principles, development and technical implementation of coherently combining distributed apertures[J].Journal of Radars, 2023, 12(6): 1229–1248. doi: 10.12000/JR23195
Citation: LIU Xinghua, WANG Guoyu, XU Zhenhai, et al. Review of principles, development and technical implementation of coherently combining distributed apertures[J].Journal of Radars, 2023, 12(6): 1229–1248. doi: 10.12000/JR23195

Review of Principles, Development and Technical Implementation of Coherently Combining Distributed Apertures

doi: 10.12000/JR23195
Funds:  The Postdoctoral Science Foundation of China (2023M734290)
More Information
  • Corresponding author: LIU Xinghua, xinghua217@163.com
  • Received Date: 2023-10-07
  • Rev Recd Date: 2023-11-19
  • Available Online: 2023-11-22
  • Publish Date: 2023-12-12
  • Coherently combining distributed apertures adjusts the transmitted/received signals of multiple distributed small apertures, allowing coordinated distributed systems to obtain high power aperture products at much lower cost than large aperture. This is a promising and viable technology as an alternative to using large apertures. This study describes the concept and principles of coherently combining distributed apertures. Depending on whether external signal inputs at the combination destination are necessary, the implementation architecture of coherent combination is classified into two categories: closed- and open-loop. The development of coherently combining distributed apertures and their application in fields such as missile defense, deep space telemetry control, radar detection over ultralong range, and radio astronomy are then comprehensively presented. Furthermore, key techniques for aligning the time and phase of the transmitted/received signals for each aperture are elaborated, which are also necessary for coherently combining distributed apertures, including high-precision distributed time-frequency transfer and synchronization, and coherently combining parameters estimation, measurement and calibration, and prediction. Finally, summary is presented, and the scope of future works in this field is explored.

     

  • loading
  • [1]
    LAZIO J, VIRKKI A K, PINILLA-ALONSO N, et al. The next-generation ground-based planetary radar[J]. Bulletin of the American Astronomical Society, 2021, 53(4): 434. doi: 10.3847/25c2cfeb.9c808c46
    [2]
    鲁耀兵, 高红卫. 分布孔径雷达[M]. 北京: 国防工业出版社, 2017: 216–217.

    LU Yaobing and GAO Hongwei. Distributed Aperture Radar[M]. Beijing: National Defense Industry Press, 2017: 216–217.
    [3]
    KORDIK A M, METCALF J G, CURTIS D D, et al. Graceful performance degradation and improved error tolerance via mixed-mode distributed coherent radar[J]. IEEE Sensors Journal, 2023, 23(5): 5251–5262. doi: 10.1109/JSEN.2023.3236487
    [4]
    NANZER J A, MGHABGHAB S R, ELLISON S M, et al. Distributed phased arrays: Challenges and recent advances[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4893–4907. doi: 10.1109/TMTT.2021.3092401
    [5]
    CUOMO K M, COUTTS S D, MCHARG J C, et al. Wideband aperture coherence processing for next generation radar (NexGen)[R]. Bostan: Lincoln Laboratory, 2004.
    [6]
    刘泉华, 张凯翔, 梁振楠, 等. 地基分布式相参雷达技术研究综述[J]. 信号处理, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001

    LIU Quanhua, ZHANG Kaixiang, LIANG Zhennan, et al. Research overview of ground-based distributed coherent aperture radar[J]. Journal of Signal Processing, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001
    [7]
    THOME G D, ENZMANN R P, and STEUDEL F. System and method for coherently combining a plurality of radars[P]. US, 7358892, 2008.
    [8]
    SHARP E and DIAB M. Van Atta reflector array[J]. IRE Transactions on Antennas and Propagation, 1960, 8(4): 436–438. doi: 10.1109/TAP.1960.1144877
    [9]
    SKOLNIK M and KING D. Self-phasing array antennas[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(2): 142–149. doi: 10.1109/TAP.1964.1138179
    [10]
    EBERLE J. An adaptively phased, four-element array of thirty-foot parabolic reflectors for passive (Echo) communication systems[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(2): 169–176. doi: 10.1109/TAP.1964.1138190
    [11]
    YOUNG D P, JACKLIN N, PUNNOOSE R J, et al. Time reversal signal processing for communication[R]. Albuquerque: Sandia National Laboratories, 2011.
    [12]
    陈秋菊, 姜秋喜, 曾芳玲, 等. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成[J]. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101

    CHEN Qiuju, JIANG Qiuxi, ZENG Fangling, et al. Single frequency spatial power combining using sparse array based on time reversal of electromagnetic wave[J]. Acta Physica Sinica, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [13]
    YAVUZ M E and TEIXEIRA F L. Ultrawideband microwave sensing and imaging using time-reversal techniques: A review[J]. Remote Sensing, 2009, 1(3): 466–495. doi: 10.3390/rs1030466
    [14]
    TAN Long, PAN Jifei, JIANG Qiuxi, et al. Application of time-reversal in electromagnetic power synthesis under distributed motion platform[J]. Heliyon, 2022, 8(12): e11822. doi: 10.1016/j.heliyon.2022.e11822
    [15]
    HEIMILLER R C, BELYEA J E, and TOMLINSON P G. Distributed array radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(6): 831–839. doi: 10.1109/TAES.1983.309395
    [16]
    NANZER J A, SCHMID R L, COMBERIATE T M, et al. Open-loop coherent distributed arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1662–1672. doi: 10.1109/TMTT.2016.2637899
    [17]
    ELLISON S M, MGHABGHAB S, DOROSHEWITZ J J, et al. Combined wireless ranging and frequency transfer for internode coordination in open-loop coherent distributed antenna arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 68(1): 277–287. doi: 10.1109/TMTT.2019.2943292
    [18]
    MGHABGHAB S R and NANZER J A. Open-loop distributed beamforming using wireless frequency synchronization[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 896–905. doi: 10.1109/TMTT.2020.3022385
    [19]
    ELLISON S M, MGHABGHAB S R, and NANZER J A. Scalable high-accuracy ranging and wireless frequency synchronization for open-loop distributed phased arrays[C]. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems, Springfield, USA, 2020: 41–44.
    [20]
    FLETCHER A S and ROBEY F C. Performance bounds for adaptive coherence of sparse array radar[C]. 11th Conference Adaptive Sensors Array Processing, Lexington, USA, 2003.
    [21]
    COUTTS S, CUOMO K, MCHARG J, et al. Distributed coherent aperture measurements for next generation BMD radar[C]. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, USA, 2006: 390–393.
    [22]
    Committee on an Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives, Division on Engineering and Physical Sciences, and National Research Council of the National Academies. Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives[M]. Washington: National Academies Press, 2012: (4)6–(4)10.
    [23]
    MISHORY J. DOD advises against ‘Stacked’ AN/TPY-2 radars to boost missile defense[J]. Inside the Army, 2013, 25(17): 115–116.
    [24]
    Acquisition,Technology & Logistics Agency (ATLA). Electronic systems research center[EB/OL]. https://www.mod.go.jp/atla/en/densouken.html. 2019.
    [25]
    鲁耀兵, 张履谦, 周荫清, 等 分布式阵列相参合成雷达技术研究[J]. 系统工程与电子技术, 2013, 35(8): 1657–1662.

    LU Yaobing, ZHANG Lüqian, ZHOU Yinqing, et al. Study on distributed aperture coherence-synthetic radar technology[J]. Systems Engineering and Electronics, 2013, 35(8): 1657–1662.
    [26]
    鲁耀兵, 高红卫, 周宝亮. 分布式孔径相参合成雷达技术[J]. 雷达学报, 2017, 6(1): 55–64. doi: 10.12000/JR17014

    LU Yaobing, GAO Hongwei, and ZHOU Baoliang. Distributed aperture coherence-synthetic radar technology[J]. Journal of Radars, 2017, 6(1): 55–64. doi: 10.12000/JR17014
    [27]
    周宝亮, 雷子健, 周东明, 等. 分布式孔径相参雷达预警探测技术[J]. 信号处理, 2018, 34(11): 1330–1338. doi: 10.16798/j.issn.1003-0530.2018.11.008

    ZHOU Baoliang, LEI Zijian, ZHOU Dongming, et al. Early-warning detection technology of distributed aperture coherent radar[J]. Journal of Signal Processing, 2018, 34(11): 1330–1338. doi: 10.16798/j.issn.1003-0530.2018.11.008
    [28]
    殷丕磊. 地基宽带分布式全相参雷达技术研究[D]. [博士论文], 北京理工大学, 2016.

    YIN Pilei. Research on ground-based wideband distributed coherent aperture radar[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2016.
    [29]
    ZENG Tao, YIN Pilei, and LIU Quanhua. Wideband distributed coherent aperture radar based on stepped frequency signal: Theory and experimental results[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 672–688. doi: 10.1049/iet-rsn.2015.0221
    [30]
    YIN Pilei, YANG Xiaopeng, LIU Quanhua, et al. Wideband distributed coherent aperture radar[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 1114–1117.
    [31]
    LIU Xinghua, XU Zhenhai, WANG Luoshengbin, et al. Dual-radar coherently combining: Generalised paradigm and verification example[J]. IET Radar, Sonar & Navigation, 2019, 13(5): 689–699. doi: 10.1049/iet-rsn.2018.5089
    [32]
    LIU Xinghua, XU Zhenhai, LIU Xiang, et al. A clean signal reconstruction approach for coherently combining multiple radars[J]. EURASIP Journal on Advances in Signal Processing, 2018, 2018(1): 47. doi: 10.1186/s13634-018-0569-1
    [33]
    刘兴华. 分布式多雷达认知协同探测技术研究[D]. [博士论文], 国防科技大学, 2019.

    LIU Xinghua. Research on cognitive collaboration technology of distributed radars[D]. [Ph.D. dissertation], National University of Defense Technology, 2019.
    [34]
    LIU Xinghua, XU Zhenhai, and XIAO Shunping. Performance gain bounds of coherently combining multiple radars in a target-based calibration manner[J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 278–287. doi: 10.21629/JSEE.2019.02.07
    [35]
    VILNROTTER V, LEE D, CORNISH T, et al. Uplink arraying experiment with the Mars Global Surveyor spacecraft[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–166, 2006.
    [36]
    VILNROTTER V, LEE D, MUKAI R, et al. Three-antenna Doppler-delay imaging of the crater Tycho for uplink array calibration applications[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–169, 2007.
    [37]
    DAVARIAN F. Uplink arraying next steps[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–175, 2008.
    [38]
    VILNROTTER V, LEE D, TSAO P, et al. Uplink array calibration via lunar Doppler-delay imaging[C]. 2010 IEEE Aerospace Conference, Big Sky, USA, 2010: 1–12.
    [39]
    GELDZAHLER B J. Coherent uplink arraying techniques for next generation space communications and planetary radar systems[C]. SPIE 8040, Active and Passive Signatures II, Orlando, USA, 2011: 80400A.
    [40]
    GELDZAHLER B, MILLER M, BIRR R, et al. Field demonstration of coherent uplink from a phased array of widely separated antennas: Steps toward a verifiable real-time atmospheric phase fluctuation correction for a high resolution radar system[C]. Advanced Maui Optical and Space Surveillance Technologies (AMOS), Maui, USA, 2014.
    [41]
    GELDZAHLER B, BERSHAD C, BROWN R, et al. A phased array of widely separated antennas for space communication and planetary radar[C]. Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference, Wailea, Hawaii, 2017.
    [42]
    王虎, 韩长喜, 薛慧. 美国深空先进雷达发展研究[J]. 飞航导弹, 2021(12): 122–126, 145.

    WANG Hu, HAN Changxi, XUE Hui, United States deep space advanced radar development study[J]. Aerodynamic Missile Journal, 2021(12): 122–126, 145.
    [43]
    Johns HOPKINS. Johns Hopkins APL delivers new satellite tracking capability to U.S. space force[EB/OL]. https://www.jhuapl.edu/news/news-releases/220324-apl-delivers-satellite-tracking-capability-to-space-force, 2022.
    [44]
    SANCHEZ NET M, TAYLOR M, VILNROTTER V, et al. A ground-based planetary radar array[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–229, 2022.
    [45]
    龙腾. “中国复眼”: 深空雷达探测面临的挑战与机遇[J]. 高科技与产业化, 2023, 29(4): 14–17.

    LONG Teng. China’s compound eye: Challenges and opportunities for deep space radardetection[J]. High-Technology & Commercialization, 2023, 29(4): 14–17.
    [46]
    THOMPSON A R, MORAN J M, and SWENSON JR G W. Interferometry and Synthesis in Radio Astronomy[M]. Cham: Springer, 2017: 44–56.
    [47]
    RAU U. Introduction to radio interferometry – algorithms and computing[EB/OL]. http://www.aoc.nrao.edu/~rurvashi/DataFiles/Talk_CHTCVisit_Intro_Radio_Interferometry_UR.pdf, 2019.
    [48]
    彭勃, 金乘进, 杜彪, 等. 持续参与世界最大综合孔径望远镜SKA国际合作[J]. 中国科学: 物理学 力学 天文学, 2012, 42(12): 1292–1307. doi: 10.1360/132012-662

    PENG Bo, JIN Chengjin, DU Biao, et al. China’s participation in the SKA—the world’s largest synthesis radio telescope[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42(12): 1292–1307. doi: 10.1360/132012-662
    [49]
    Focus on first Sgr A* results from the event horizon telescope[EB/OL]. https://iopscience.iop.org/journal/2041-8205/page/Focus_on_First_Sgr_A_Results, 2022.
    [50]
    刘兴华, 徐振海, 肖顺平. 分布式相参雷达几何布置约束条件[J]. 系统工程与电子技术, 2017, 39(8): 1723–1731. doi: 10.3969/j.issn.1001-506X.2017.08.09

    LIU Xinghua, XU Zhenhai, and XIAO Shunping. Geometric arrangement constraints of distributed coherent aperture radar[J]. Systems Engineering and Electronics, 2017, 39(8): 1723–1731. doi: 10.3969/j.issn.1001-506X.2017.08.09
    [51]
    LEWANDOWSKI W, AZOUBIB J, and KLEPCZYNSKI W J. GPS: Primary tool for time transfer[J]. Proceedings of the IEEE, 1999, 87(1): 163–172. doi: 10.1109/5.736348
    [52]
    LOMBARDI M A, NELSON L M, NOVICK A N, et al. Time and frequency measurements using the global positioning system[J]. Cal Lab: International Journal of Metrology, 2001, 8(3): 26–33.
    [53]
    MERLO J M, MGHABGHAB S R, and NANZER J A. Wireless picosecond time synchronization for distributed antenna arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(4): 1720–1731. doi: 10.1109/TMTT.2022.3227878
    [54]
    KIRCHNER D. Two-way Satellite Time and Frequency Transfer (TWSTFT): Principle, Implementation, and Current Performance[M]. STONE W R. Review of Radio Science 1996–1999. Cambridge: Cambridge University Press, 1999: 27–44.
    [55]
    FUJIEDA M, GOTOH T, NAKAGAWA F, et al. Carrier-phase-based two-way satellite time and frequency transfer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(12): 2625–2630. doi: 10.1109/TUFFC.2012.2503
    [56]
    FUJIEDA M, GOTOH T, and AMAGAI J. Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements[J]. Journal of Physics: Conference Series, 2016, 723: 012036. doi: 10.1088/1742-6596/723/1/012036
    [57]
    IEEE.1588-2019 IEEE Standard for a precision clock synchronization protocol for networked measurement and control systems[S]. Piscataway: IEEE, 2020: 1–499.
    [58]
    李培基, 李卫, 朱祥维, 等. 网络时间同步协议综述[J]. 计算机工程与应用, 2019, 55(3): 30–38. doi: 10.3778/j.issn.1002-8331.1809-0008

    LI Peiji, LI Wei, ZHU Xiangwei, et al. Overview of network time synchronization protocol[J]. Computer Engineering and Applications, 2019, 55(3): 30–38. doi: 10.3778/j.issn.1002-8331.1809-0008
    [59]
    MGHABGHAB S, OUASSAL H, and NANZER J A. Wireless frequency synchronization for coherent distributed antenna arrays[C]. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, USA, 2019: 1575–1576.
    [60]
    MGHABGHAB S R, SCHLEGEL A, and NANZER J A. Adaptive distributed transceiver synchronization over a 90 m microwave wireless link[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(5): 3688–3699. doi: 10.1109/TAP.2021.3138506
    [61]
    RASHID M and NANZER J A. Frequency and phase synchronization in distributed antenna arrays based on consensus averaging and Kalman filtering[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2789–2803. doi: 10.1109/TWC.2022.3213788
    [62]
    杨文哲, 杨宏雷, 赵环, 等. 光纤时频传递技术进展[J]. 时间频率学报, 2019, 42(3): 214–223. doi: 10.13875/j.issn.1674-0637.2019-03-0214-10

    YANG Wenzhe, YANG Honglei, ZHAO Huan, et al. Technical progress of fiber-based time and frequency transfer[J]. Journal of Time and Frequency, 2019, 42(3): 214–223. doi: 10.13875/j.issn.1674-0637.2019-03-0214-10
    [63]
    曾涛, 殷丕磊, 杨小鹏, 等. 分布式全相参雷达系统时间与相位同步方案研究[J]. 雷达学报, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104

    ZENG Tao, YIN Pilei, YANG Xiaopeng, et al. Time and phase synchronization for distributed aperture coherent radar[J]. Journal of Radars, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104
    [64]
    SEO M, RODWELL M, and MADHOW U. A feedback-based distributed phased array technique and its application to 60-GHz wireless sensor network[C]. 2008 IEEE MTT-S International Microwave Symposium Digest, Atlanta, USA, 2008: 683–686.
    [65]
    BIDIGARE P, OYARZYN M, RAEMAN D, et al. Implementation and demonstration of receiver-coordinated distributed transmit beamforming across an ad-hoc radio network[C]. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 222–226.
    [66]
    SUN Peilin, TANG Jun, HE Qian, et al. Cramer-Rao bound of parameters estimation and coherence performance for next generation radar[J]. IET Radar, Sonar & Navigation, 2013, 7(5): 553–567. doi: 10.1049/iet-rsn.2012.0139
    [67]
    梁益丰, 许江宁, 吴苗, 等. 光纤时频同步技术的研究进展[J]. 激光与光电子学进展, 2020, 57(5): 050004. doi: 10.3788/LOP57.050004

    LIANG Yifeng, XU Jiangning, WU Miao, et al. Research progress on optical fiber time-frequency synchronization technology[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050004. doi: 10.3788/LOP57.050004
    [68]
    KAUR N, FRANK F, PINTO J, et al. A 500-km cascaded white rabbit link for high-performance frequency dissemination[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(2): 892–901.
    [69]
    全洪雷, 薛文祥, 赵文宇, 等. 国家授时中心高精度光纤微波频率传递研究进展[J]. 时间频率学报, 2021, 44(4): 255–265. doi: 10.13875/j.issn.1674-0637.2021-04-0255-11

    QUAN Honglei, XUE Wenxiang, ZHAO Wenyu, et al. Progress of high-resolution fiber-based microwave frequency dissemination in NTSC[J]. Journal of Time and Frequency, 2021, 44(4): 255–265. doi: 10.13875/j.issn.1674-0637.2021-04-0255-11
    [70]
    DIDDAMS S A, VAHALA K, and UDEM T. Optical frequency combs: Coherently uniting the electromagnetic spectrum[J]. Science, 2020, 369(6501): eaay3676. doi: 10.1126/science.aay3676
    [71]
    袁一博. 光纤网络时间频率传输与同步技术研究[D]. [博士论文], 清华大学, 2017.

    YUAN Yibo. The research on fiber-based time and frequency dissemination and sychronization technique[D]. [Ph.D. dissertation], Tsinghua University, 2017.
    [72]
    CLIVATI C, AIELLO R, BIANCO G, et al. Common-clock very long baseline interferometry using a coherent optical fiber link[J]. Optica, 2020, 7(8): 1031–1037. doi: 10.1364/OPTICA.393356
    [73]
    SHEN Qi, GUAN Jianyu, REN Jigang, et al. Free-space dissemination of time and frequency with 10−19 instability over 113 km[J]. Nature, 2022, 610(7933): 661–666. doi: 10.1038/s41586-022-05228-5
    [74]
    宋靖, 牛朝阳, 张剑云. 分布式全相参雷达正交频分LFM信号设计及性能分析[J]. 中国科学: 信息科学, 2015, 45(8): 968–984. doi: 10.1360/N112014-00185

    SONG Jing, NIU Zhaoyang, and ZHANG Jianyun. OFD-LFM signal design and performance analysis for distributed aperture fully coherent radar[J]. SCIENTIA SINICA Informationis, 2015, 45(8): 968–984. doi: 10.1360/N112014-00185
    [75]
    宋靖, 周青松, 张剑云. 基于相关法的分布式全相参雷达相干参数估计及相参性能[J]. 电子与信息学报, 2015, 37(7): 1710–1715. doi: 10.11999/JEIT141339

    SONG Jing, ZHOU Qingsong, and ZHANG Jianyun. Coherent parameters estimation by cross-correlation for distributed aperture fully coherent radar[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1710–1715. doi: 10.11999/JEIT141339
    [76]
    陈金铭, 王彤, 吴建新, 等. 基于滤波器网格失配的分布式相参雷达目标参数估计方法[J]. 系统工程与电子技术, 2019, 41(11): 2460–2470. doi: 10.3969/j.issn.1001-506X.2019.11.09

    CHEN Jinming, WANG Tong, WU Jianxin, et al. Target parameter estimation method for distributed coherent aperture radar based on grid mismatch filtering[J]. Systems Engineering and Electronics, 2019, 41(11): 2460–2470. doi: 10.3969/j.issn.1001-506X.2019.11.09
    [77]
    MGHABGHAB S and NANZER J A. Ranging requirements for open-loop coherent distributed arrays with wireless frequency synchronization[C]. 2020 IEEE USNC-CNC-URSI North American Radio Science Meeting, Montreal, Canada, 2020: 69–70.
    [78]
    ELLISON S M and NANZER J A. High-accuracy multinode ranging for coherent distributed antenna arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 4056–4066. doi: 10.1109/TAES.2020.2985251
    [79]
    HODKIN J E, ZILEVU K S, SHARP M D, et al. Microwave and millimeter-wave ranging for coherent distributed RF systems[C]. 2015 IEEE Aerospace Conference, Big Sky, USA, 2015: 1–7.
    [80]
    ELLISON S M, MGHABGHAB S R, and NANZER J A. Multi-node open-loop distributed beamforming based on scalable, high-accuracy ranging[J]. IEEE Sensors Journal, 2022, 22(2): 1629–1637. doi: 10.1109/JSEN.2021.3130793
    [81]
    LIU Xiaoyu, WANG Tong, CHEN Jinming, et al. Efficient configuration calibration in airborne distributed radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1799–1817. doi: 10.1109/TAES.2021.3139431
    [82]
    CHEN Jinming, WANG Tong, LIU Xiaoyu, et al. Identifiability analysis of positioning and synchronization errors in airborne distributed coherence aperture radars[J]. IEEE Sensors Journal, 2022, 22(6): 5978–5993. doi: 10.1109/JSEN.2022.3144481
    [83]
    陈金铭, 王彤, 吴建新, 等. 基于特显点的机载分布式相参雷达同步误差校正方法[J]. 电子与信息学报, 2021, 43(2): 356–363. doi: 10.11999/JEIT190694

    CHEN Jinming, WANG Tong, WU Jianxin, et al. Airborne distributed coherent aperture radar synchronization error calibration method based on prominent points[J]. Journal of Electronics & Information Technology, 2021, 43(2): 356–363. doi: 10.11999/JEIT190694
    [84]
    CHEN Jinming, WANG Tong, LIU Xiaoyu, et al. Time and phase synchronization using clutter observations in airborne distributed coherent aperture radars[J]. Chinese Journal of Aeronautics, 2022, 35(3): 432–449. doi: 10.1016/j.cja.2021.08.040
    [85]
    ZHOU Dingsen, YANG Minglei, YANG Rong, et al. Distributed coherent aperture radar on moving platforms: Theoretical study and tests[C]. 2022 16th IEEE International Conference on Signal Processing, Beijing, China, 2022: 518–523.
    [86]
    OUASSAL H, YAN Ming, and NANZER J A. Decentralized frequency alignment for collaborative beamforming in distributed phased arrays[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6269–6281. doi: 10.1109/TWC.2021.3073120
    [87]
    OUASSAL H, ROCCO T, YAN Ming, et al. Decentralized frequency synchronization in distributed antenna arrays with quantized frequency states and directed communications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5280–5288. doi: 10.1109/TAP.2020.2977751
    [88]
    XIAO Xuedi, LI Shangyuan, XUE Xiaoxiao, et al. Photonics-assisted broadband distributed coherent aperture radar for high-precision imaging of dim-small targets[J]. IEEE Photonics Journal, 2019, 11(5): 5502709. doi: 10.1109/JPHOT.2019.2934472
    [89]
    李尚远, 肖雪迪, 郑小平. 基于微波光子学的分布式相参孔径雷达[J]. 雷达学报, 2019, 8(2): 178–188. doi: 10.12000/JR19024

    LI Shangyuan, XIAO Xuedi, and ZHENG Xiaoping. Distributed coherent aperture radar enabled by microwave photonics[J]. Journal of Radars, 2019, 8(2): 178–188. doi: 10.12000/JR19024
    [90]
    LEMBO L, MARESCA S, SERAFINO G, et al. In-field demonstration of a photonic coherent MIMO distributed radar network[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–6.
    [91]
    吴剑旗, 戴晓霖, 杨利民, 等. 一种大基线分布雷达近场相参探测技术[J]. 雷达科学与技术, 2020, 18(6): 579–583. doi: 10.3969/j.issn.1672-2337.2020.06.001

    WU Jianqi, DAI Xiaolin, YANG Limin, et al. Study on a near-field coherent detection technology for long-baseline distributed radar[J]. Radar Science and Technology, 2020, 18(6): 579–583. doi: 10.3969/j.issn.1672-2337.2020.06.001
    [92]
    臧会凯, 雷欢, 但晓东, 等. 分布式雷达相参发射原理与性能分析[J]. 电子与信息学报, 2015, 37(8): 1801–1807. doi: 10.11999/JEIT141563

    ZANG Huikai, LEI Huan, DAN Xiaodong, et al. Theory and performance analysis of coherent transmission for distributed radars[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1801–1807. doi: 10.11999/JEIT141563
    [93]
    王元昊, 王宏强, 刘兴华, 等. 分布式相参雷达相参效率及相参景深研究[J/OL]. 系统工程与电子技术, 1–13. http://kns.cnki.net/kcms/detail/11.2422.TN.20221229.1852.012.html, 2023.

    WANG Yuanhao, WANG Hongqiang, LIU Xinghua, et al. Research on transmit coherent synthesis efficiency and coherent depth of field of distributed coherent aperture radar[J/OL]. Systems Engineering and Electronics, 1–13. http://kns.cnki.net/kcms/detail/11.2422.TN.20221229.1852.012.html, 2023.
    [94]
    VILNROTTER V, JAO J, GIORGINI J, et al. Proving the uplink array for radar observations[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–223, 2020.
    [95]
    VILNROTTER V, GIORGINI J, JAO J, et al. Development of an uplink array radar system for cis-lunar and planetary observations[C]. 2023 IEEE Aerospace Conference, Big Sky, USA, 2023: 1–8.
    [96]
    CUOMO K M, PIOU J E, and MAYHAN J T. Ultra-wideband coherent processing[J]. The Lincoln Laboratory Journal, 1997, 10(2): 203–222.
    [97]
    YANG Xiaopeng, YIN Pilei, ZENG Tao, et al. Applying auxiliary array to suppress mainlobe interference for ground-based radar[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 433–436. doi: 10.1109/LAWP.2013.2254698
    [98]
    ZHANG Honggang, LUO Jian, CHEN Xinliang, et al. Whitening filter for mainlobe interference suppression in distributed array radar[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(785) PDF downloads(293) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint