Volume 12 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
HU Mingchun. Concept and system architecture of open phased array[J]. Journal of Radars, 2023, 12(4): 684–695. doi: 10.12000/JR23103
Citation: HU Mingchun. Concept and system architecture of open phased array[J]. Journal of Radars, 2023, 12(4): 684–695. doi: 10.12000/JR23103

Concept and System Architecture of Open Phased Array

DOI: 10.12000/JR23103
Funds:  The National Ministries Foundation
More Information
  • Corresponding author: HU Mingchun, 13951004670@139.com
  • Received Date: 2023-06-07
  • Rev Recd Date: 2023-07-12
  • Available Online: 2023-07-17
  • Publish Date: 2023-07-26
  • In the article, the concept and system architecture of open phased array is elaborated systematically and comprehensively for the first time. Open phased array has the characteristics of virtualized resources, software-defined applications, and modular hardware architecture. Furthermore, it can adapt to current and future rapidly evolving operating tasks, operating environments, and bearing platforms. The open phased array will dominate the mainstream of the next-generation phased array system, with broad application prospects in radar, communication, electronic warfare, and other fields. This article presents the development requirements and concept of open phased array systems and summarizes their development history. The hierarchical architecture of an open phased array system is depicted in detail, and the design concept and method are comprehensively introduced in terms of hardware, resource, and application layers. Furthermore, key features of resource virtualization and processing reconfiguration of open phased array systems are introduced, and key technologies supporting open phased array realization are enumerated, which will help to develop a new generation of radio frequency systems.

     

  • loading
  • [1]
    伍光新, 李归. 综合射频一体化系统技术发展综述[J]. 现代雷达, 2023, 45(5): 1–14. doi: 10.16592/j.cnki.1004-7859.2023.05.001

    WU Guangxin and LI Gui. Overview of technological development of integrated RF system[J]. Modern Radar, 2023, 45(5): 1–14. doi: 10.16592/j.cnki.1004-7859.2023.05.001
    [2]
    MOO P W and DIFILIPPO D J. Multifunction RF systems for naval platforms[J]. Sensors, 2018, 18(7): 2076. doi: 10.3390/s18072076
    [3]
    刘宏伟, 严峻坤, 周生华. 网络化雷达协同探测技术[J]. 现代雷达, 2020, 42(12): 7–12. doi: 10.16592/j.cnki.1004-7859.2020.12.002

    LIU Hongwei, YAN Junkun, and ZHOU Shenghua. Collaborative detection technology of netted radar[J]. Modern Radar, 2020, 42(12): 7–12. doi: 10.16592/j.cnki.1004-7859.2020.12.002
    [4]
    刘泉华, 张凯翔, 梁振楠, 等. 地基分布式相参雷达技术研究综述[J]. 信号处理, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001

    LIU Quanhua, ZHANG Kaixiang, LIANG Zhennan, et al. Research overview of ground-based distributed coherent aperture radar[J]. Journal of Signal Processing, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001
    [5]
    韩长喜, 邓大松, 王虎, 等. 2022年雷达技术发展综述[J]. 中国电子科学研究院学报, 2023, 18(2): 108–112. doi: 10.3969/j.issn.1673-5692.2023.02.002

    HAN Changxi, DENG Dasong, WANG Hu, et al. Development of radar technology in 2022[J]. Journal of CAEIT, 2023, 18(2): 108–112. doi: 10.3969/j.issn.1673-5692.2023.02.002
    [6]
    BROOKNER E. Advances and breakthroughs in radars and phased-arrays[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–9.
    [7]
    汤俊, 吴洪, 魏鲲鹏. 软件化雷达技术研究[J]. 雷达学报, 2015, 4(4): 481–489. doi: 10.12000/JR15012

    TANG Jun, WU Hong, and WEI Kunpeng. Software radar technology[J]. Journal of Radars, 2015, 4(4): 481–489. doi: 10.12000/JR15012
    [8]
    KLEIN M, CARPENTIER T, JEANCLAUDE E, et al. Ai-augmented multi function radar engineering with digital twin: Towards proactivity[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6.
    [9]
    马咏雪, 邢文革, 沈学勇, 等. 海上反突防作战中雷达应用模式研究[J]. 现代雷达, 2023, 45(4): 66–74. doi: 10.16592/j.cnki.1004-7859.2023.04.010

    MA Yongxue, XING Wenge, SHEN Xueyong, et al. A study on radar operating mode for marine anti-penetration battle[J]. Modern Radar, 2023, 45(4): 66–74. doi: 10.16592/j.cnki.1004-7859.2023.04.010
    [10]
    赵保军, 陈士涛, 李大喜, 等. 国外六代机发展及作战概念分析[J]. 现代防御技术, 2022, 50(6): 19–25. doi: 10.3969/j.issn.1009-086x.2022.06.003

    ZHAO Baojun, CHEN Shitao, LI Daxi, et al. Analysis of the sixth generation fighter development and operational concept[J]. Modern Defense Technology, 2022, 50(6): 19–25. doi: 10.3969/j.issn.1009-086x.2022.06.003
    [11]
    王冠, 尹童, 曹颖. 国外高超声速武器攻防发展态势研究[J]. 现代防御技术, 2022, 50(2): 26–32. doi: 10.3969/j.issn.1009-086x.2022.02.004

    WANG Guan, YIN Tong, and CAO Ying. Research on the development of foreign hypersonic offensive and defensive weapons[J]. Modern Defence Technology, 2022, 50(2): 26–32. doi: 10.3969/j.issn.1009-086x.2022.02.004
    [12]
    陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[C]. 第十九届中国科协年会——分4信息新技术 东北新工业论坛论文集, 长春, 2017: 169–174.

    CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radar Low-observable target detection[C]. 19th Annual Conference of CAST——Selected Papers of the Northeast New Industry Forum on Information New Technology, Changchun, China, 2017: 169–174.
    [13]
    王峰, 李培, 徐锋. 新一代雷达电磁空间深蓝博弈技术需求分析[J]. 中国电子科学研究院学报, 2021, 16(12): 1195–1200, 1223. doi: 10.3969/j.issn.1673-5692.2021.12.003

    WANG Feng, LI Pei, and XU Feng. Demand analysis of deep blue game in electromagnetic space for new generation radar[J]. Journal of CAEIT, 2021, 16(12): 1195–1200, 1223. doi: 10.3969/j.issn.1673-5692.2021.12.003
    [14]
    宫尚玉, 陈亮, 王月悦. 外军机载干扰吊舱发展研究[J]. 舰船电子对抗, 2022, 45(6): 8–14. doi: 10.16426/j.cnki.jcdzdk.2022.06.003

    GONG Shangyu, CHEN Liang, and WANG Yueyue. Research into the development of airborne jamming pods in foreign military[J]. Shipboard Electronic Countermeasure, 2022, 45(6): 8–14. doi: 10.16426/j.cnki.jcdzdk.2022.06.003
    [15]
    王昊, 肖慧鑫. 一种小型无人机载雷达伺服系统设计[J]. 火力与指挥控制, 2018, 43(9): 159–162, 168. doi: 10.3969/j.issn.1002-0640.2018.09.033

    WANG Hao and XIAO Huixin. Desigh of a small radar servo system for UAV[J]. Fire Control &Command Control, 2018, 43(9): 159–162, 168. doi: 10.3969/j.issn.1002-0640.2018.09.033
    [16]
    李龙, 刘峥, 陈熠, 等. 高超声速平台雷达杂波特性研究[J]. 现代雷达, 2013, 35(11): 80–83. doi: 10.3969/j.issn.1004-7859.2013.11.019

    LI Long, LIU Zheng, CHEN Yi, et al. Research of radar clutter characteristics on hypersonic vehicle[J]. Modern Radar, 2013, 35(11): 80–83. doi: 10.3969/j.issn.1004-7859.2013.11.019
    [17]
    叶海军, 潘舟浩, 秦国杰, 等. 无人预警机系统架构及关键技术分析[J]. 中国电子科学研究院学报, 2022, 17(5): 411–415. doi: 10.3969/j.issn.1673-5692.2022.05.001

    YE Haijun, PAN Zhouhao, QIN Guojie, et al. The system architecture and key technologies analyses of unmanned early warning aircraft[J]. Journal of CAEIT, 2022, 17(5): 411–415. doi: 10.3969/j.issn.1673-5692.2022.05.001
    [18]
    赵正平. Chiplet基三维集成技术与集成微系统的新进展(续)[J]. 微纳电子技术, 2023, 60(5): 641–657. doi: 10.13250/j.cnki.wndz.2023.05.001

    ZHAO Zhengping. New advances in Chiplet-based 3D integration technology and integrated microsystems (continued)[J]. Micronanoelectronic Technology, 2023, 60(5): 641–657. doi: 10.13250/j.cnki.wndz.2023.05.001
    [19]
    李康, 纠博, 赵宇, 等. 雷达智能博弈抗干扰技术综述与展望[J]. 现代雷达, 2023, 45(5): 15–26. doi: 10.16592/j.cnki.1004-7859.2023.05.002

    LI Kang, JIU Bo, ZHAO Yu, et al. Overview and prospects of radar intelligent game-based anti-jamming technology[J]. Modern Radar, 2023, 45(5): 15–26. doi: 10.16592/j.cnki.1004-7859.2023.05.002
    [20]
    HAIGH K and ANDRUSENKO J. Cognitive Electronic Warfare: An Artificial Intelligence Approach[M]. Norwood: Artech House, 2021: 1–288.
    [21]
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [22]
    刘洋, 黄志, 徐娟, 等. 并行算法在气象数据处理中的研究与应用[J]. 电子设计工程, 2023, 31(11): 152–156, 162. doi: 10.14022/j.issn1674-6236.2023.11.033

    LIU Yang, HUANG Zhi, XU Juan, et al. Research and application of the parallel algorithm in meteorological data processing[J]. Electronic Design Engineering, 2023, 31(11): 152–156, 162. doi: 10.14022/j.issn1674-6236.2023.11.033
    [23]
    杨小牛. 从软件无线电到认知无线电, 走向终极无线电——无线通信发展展望[J]. 中国电子科学研究院学报, 2008, 3(1): 1–7. doi: 10.3969/j.issn.1673-5692.2008.01.001

    YANG Xiaoniu. Software radio, cognitive radio and ultimate radio—a prospect of wireless communication[J]. Journal of CAEIT, 2008, 3(1): 1–7. doi: 10.3969/j.issn.1673-5692.2008.01.001
    [24]
    DoD Open Systems Architecture Data Rights Team. DoD open systems architecture contract guidebook for program managers v. 1.1[EB/OL]. https://www.acqnotes.com/Attachments/Open System Architecture (OSA) Contract Guidebook for Program Managers, 2013.
    [25]
    Tech Target Contributor. Open system[EB/OL]. https://www.techtarget.com/whatis/definition/open-system, 2005.
    [26]
    崔林海, 张子迎, 姜占鹏, 等. 计算机组成原理与结构[M]. 哈尔滨工业大学出版社, 2015: 1–233.

    CUI Linhai, ZHANG Ziying, JIANG Zhanpeng, et al. Computer Organization and Architecture[M]. Harbin: Harbin Institute of Technology Press, 2015: 1–233.
    [27]
    唐朔飞. 计算机组成原理[M]. 2版. 北京: 高等教育出版社, 2008: 1–400.

    TANG Shuofei. Principles of Computer Composition[M]. 2nd ed. Beijing: Higher Education Press, 2008: 1–400.
    [28]
    张荣涛, 杨润亭, 王兴家, 等. 软件化雷达系统技术综述[J]. 现代雷达, 2016, 38(10): 1–3. doi: 10.16592/j.cnki.1004-7859.2016.10.001

    ZHANG Rongtao, YANG Runting, WANG Xingjia, et al. System technology of software defined radar[J]. Modern Radar, 2016, 38(10): 1–3. doi: 10.16592/j.cnki.1004-7859.2016.10.001
    [29]
    汤俊, 岑宗骏. 软件化雷达技术发展思考与展望[J]. 信号处理, 2022, 38(10): 1999–2008. doi: 10.16798/j.issn.1003-0530.2022.10.001

    TANG Jun and CEN Zongjun. Thinking of the prospect of software-based radar technology[J]. Journal of Signal Processing, 2022, 38(10): 1999–2008. doi: 10.16798/j.issn.1003-0530.2022.10.001
    [30]
    井应忠, 陈晓东. 基于模块化开放式系统架构的复杂电磁环境建设[J]. 信息化研究, 2018, 44(3): 1–4.

    JING Yingzhong and CHEN Xiaodong. Complex electromagnetic environment building based on modular open system architecture[J]. Informatization Research, 2018, 44(3): 1–4.
    [31]
    丁琳琳, 李路野. 可重构雷达架构研究[J]. 信息技术与信息化, 2017(7): 103–105. doi: 10.3969/j.issn.1672-9528.2017.07.029

    DING Linlin and LI Luye. Research on radar software architectur based software bus technology[J]. Information Technology and Informatization, 2017(7): 103–105. doi: 10.3969/j.issn.1672-9528.2017.07.029
    [32]
    ANDREWS S E, YOHO P K, BANNER G P, et al. Radar open system architecture for Lincoln space surveillance activities[R]. Lexington: MIT Lincoln Laboratory, 2010.
    [33]
    胡明春. 开放式有源相控阵天线系统[J]. 现代雷达, 2008, 30(8): 1–4. doi: 10.3969/j.issn.1004-7859.2008.08.001

    HU Mingchun. Open active phased array system[J]. Modern Radar, 2008, 30(8): 1–4. doi: 10.3969/j.issn.1004-7859.2008.08.001
    [34]
    岳帅英, 彭芃, 任渊. 舰载多功能相控阵雷达发展现状与趋势[J]. 舰船科学技术, 2023, 45(2): 141–147. doi: 10.3404/j.issn.1672-7649.2023.02.025

    YUE Shuaiying, PENG Peng, and REN Yuan. Development status and future trend of ship-based multi-functional phased array radar[J]. Ship Science and Technology, 2023, 45(2): 141–147. doi: 10.3404/j.issn.1672-7649.2023.02.025
    [35]
    刁华飞, 殷智勇, 张雅声, 等. 美国夸贾林“太空篱笆”系统概述与分析[J]. 航天电子对抗, 2020, 36(2): 56–59. doi: 10.3969/j.issn.1673-2421.2020.02.019

    DIAO Huafei, YIN Zhiyong, ZHANG Yasheng, et al. Overview and analysis of the US Kwajalein “space fence” surveillance system[J]. Aerospace Electronic Warfare, 2020, 36(2): 56–59. doi: 10.3969/j.issn.1673-2421.2020.02.019
    [36]
    郭敏洁. 2021年外军情报侦察领域发展综述[J]. 中国电子科学研究院学报, 2022, 17(4): 324–328. doi: 10.3969/j.issn.1673-5692.2022.04.003

    GUO Minjie. Comprehensive analysis of annual development of the intelligence su surveillance and reconnaissance in 2021[J]. Journal of CAEIT, 2022, 17(4): 324–328. doi: 10.3969/j.issn.1673-5692.2022.04.003
    [37]
    ROZA D. The air force is moving forward with a replacement for its decades-old long-range radar[EB/OL]. https://taskandpurpose.com/news/air-force-tpy-4-lockheed-radar/, 2023,
    [38]
    ORMAN A J, POTTS C N, SHAHANI A K, et al. Scheduling for a multifunction phased array radar system[J]. European Journal of Operational Research, 1996, 90(1): 13–25. doi: 10.1016/0377-2217(95)00307-X
    [39]
    HARITSA J R, LIVNY M, and CAREY M J. Earliest deadline scheduling for real-time database systems[C]. Twelfth Real-time Systems Symposium, San Antonio, USA, 1991: 232–242.
    [40]
    MOO P W and DING Z. Adaptive Radar Resource Management[M]. Amsterdam: Elsevier, 2016: 1–50.
    [41]
    HUIZING A G and BLOEMEN A A F. An efficient scheduling algorithm for a multifunction radar[C]. International Symposium on Phased Array Systems and Technology, Boston, USA, 1996: 359–364.
    [42]
    MIRANDA S L C, BAKER C J, WOODBRIDGE K, et al. Phased array radar resource management: A comparison of scheduling algorithms[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 79–84.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1528) PDF downloads(432) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint