Volume 11 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
WEI Yinsheng and XU Zhaoyang. Review of signal design for discontinuous spectrum radar[J]. Journal of Radars, 2022, 11(2): 183–197. doi: 10.12000/JR22023
Citation: WEI Yinsheng and XU Zhaoyang. Review of signal design for discontinuous spectrum radar[J]. Journal of Radars, 2022, 11(2): 183–197. doi: 10.12000/JR22023

Review of Signal Design for Discontinuous Spectrum Radar

DOI: 10.12000/JR22023
Funds:  The National Natural Science Foundation of China (61831010), The Science Foundation Project of Heilongjiang Province (JQ2019F001)
More Information
  • Corresponding author: WEI Yinsheng, weiys@hit.edu.cn
  • Received Date: 2022-01-26
  • Accepted Date: 2022-04-20
  • Rev Recd Date: 2022-04-21
  • Available Online: 2022-04-22
  • Publish Date: 2022-04-27
  • The discontinuous spectrum radar signal is a featured cognitive radar signal. Its spectrum is discontinuous and comprises multiple discrete frequency bands, and the distribution structure of the discrete frequency bands can be adapted to the change of external interference adequately. Therefore, this segmented signal is suitable for dense interference and congested spectrum based spectrum scenarios. The design of discontinuous spectrum signal is focused on two issues: (1) the optimal selection of the discontinuous spectrum structure in accordance with the interference environment to meet the requirements of radar anti-jamming and resolution performance, and (2) the solution of the time-domain emission based on the optimal discontinuous spectrum signal. A typical application of discontinuous spectrum radar signals is the anti-co-frequency interference derived of high-frequency radar. With the upgrade of electronic countermeasures and the spectrum congestion problem caused by the coexistence of multiple electronic devices, discontinuous spectrum signals are used in radar anti-jamming and electromagnetic spectrum compatibility. This paper discusses and summarizes the research on discontinuous signal design criteria and constraints, working frequency band selection and shaping, and time-domain signal waveform synthesis to promote the research and application of discontinuous spectrum signals.

     

  • loading
  • [1]
    BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2–42. doi: 10.1109/MAES.2016.160071
    [2]
    SALZMAN J, AKAMINE D, and LEFEVRE R. Optimal waveforms and processing for sparse frequency UWB operation[C]. 2001 IEEE Radar Conference, Atlanta, USA, 2001: 105–110.
    [3]
    LEONG H W and DAWE B. Channel availability for east coast high frequency surface wave radar systems[R]. Defence Research Establishment Ottawa (Ontario), 2001.
    [4]
    GREEN S D and KINGSLEY S P. Investigation of wide bandwidth HF radar waveforms[C]. IEE Colloquium on Advanced Transmission Waveforms, London, UK, 1995.
    [5]
    KUTUZOV V M. Synthesis of non-regular multitone signals and algorithms of their processing[C]. Third International Conference on Signal Processing, Beijing, China, 1996.
    [6]
    GREEN S D and KINGSLEY S P. Improving the range/time sidelobes of large bandwidth discontinuous spectra HF radar waveforms[C]. International Conference on Hf Radio Systems and Techniques, Nottingham, UK, 1997.
    [7]
    WEI Yinsheng and LIU Yongtan. New anti-jamming waveform designing and processing for HF radar[C]. 2001 CIE International Conference on Radar, Beijing, China, 2001.
    [8]
    WEI Yinsheng, LIU Yongtan, and XU Rongqing. A novel 2-D signal processing scheme for quasi-random step frequency signal[J]. Journal of Systems Engineering and Electronics, 2003, 14(3): 77–80.
    [9]
    ZHANG Dongpo and LIU Xingzhao. Signal processing technique for randomly discontinuous spectra HF radar waveforms[J]. Journal of Systems Engineering and Electronics, 2004, 15(4): 511–515.
    [10]
    ZHANG Dongpo and LIU Xingzhao. A sidelobes suppression technique for spectra discontinuous HF radar signal[C]. 7th International Conference on Signal Processing, Beijing, China, 2004.
    [11]
    ZHANG Dongpo and LIU Xingzhao. A sidelobes suppression technique for spectra discontinuous HF radar signal based on spectra compensation algorithm[C]. 2004 Asia-Pacific Radio Science Conference, 2004, Qingdao, China, 2004: 242–245.
    [12]
    LINDENFELD M J. Sparse frequency transmit-and-receive waveform design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 851–861. doi: 10.1109/TAES.2004.1337459
    [13]
    LIU Wenxian, LU Yilong, and LESTURGIE M. Optimal sparse waveform design for HFSWR system[C]. International Waveform Diversity and Design Conference, Pisa, Italy, 2007.
    [14]
    ZHAO Dehua, WEI Yinsheng, and LIU Yongtan. Hopped-frequency waveform design for range sidelobe suppression in spectral congestion[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 87–94. doi: 10.1049/iet-rsn.2017.0232
    [15]
    NUNN C and MOYER L R. Spectrally-compliant waveforms for wideband radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(8): 11–15. doi: 10.1109/MAES.2012.6329156
    [16]
    YU Xianxiang, CUI Guolong, GE Peng, et al. Constrained radar waveform design algorithm for spectral coexistence[J]. Electronics Letters, 2017, 53(8): 558–560. doi: 10.1049/el.2016.4524
    [17]
    ZHAO Dehua, WEI Yinsheng, and LIU Yongtan. PCFM radar waveform design with spectral and correlation considerations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2885–2898. doi: 10.1109/TAES.2017.2719359
    [18]
    GERLACH K. Thinned spectrum ultrawideband waveforms using stepped-frequency polyphase codes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1356–1361. doi: 10.1109/7.722721
    [19]
    FAUST H H, CONNOLLY B, FIRESTONE T M, et al. A spectrally clean transmitting system for solid-state phased-array radars[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004.
    [20]
    DE GRAAF J, FAUST H, ALATISHE J, et al. Generation of spectrally confined transmitted radar waveforms: Experimental results[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006.
    [21]
    PAN Mengguan, CHEN Baixiao, and YANG Minglei. A general range-velocity processing scheme for discontinuous spectrum FMCW signal in HFSWR applications[J]. International Journal of Antennas and Propagation, 2016, 2016: 2609873. doi: 10.1155/2016/2609873
    [22]
    ZHANG Dongpo and LIU Xingzhao. Range sidelobes suppression for wideband randomly discontinuous spectra OTH-HF radar signal[C]. 2004 IEEE Radar Conference (IEEE Cat. No. 04CH37509), Philadelphia, USA, 2004: 577–581.
    [23]
    MISHRA K V, MULLETI S, and ELDAR Y C. RaSSteR: Random sparse step-frequency radar[Z]. arXiv preprint arXiv: 2004.05720, 2020.
    [24]
    ZHANG Jie. Study on wideband sparse spectrum waveform for anti-interception and anti-jamming countermeasure[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–5.
    [25]
    FAN Wen, LIANG Junli, SO H C, et al. Min-max metric for spectrally compatible waveform design via log-exponential smoothing[J]. IEEE Transactions on Signal Processing, 2020, 68: 1075–1090. doi: 10.1109/TSP.2020.2969043
    [26]
    YANG J, AUBRY A, DE MAIO A, et al. Multi-spectrally constrained transceiver design against signal-dependent interference[J]. IEEE Transactions on Signal Processing, 2022.
    [27]
    AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1138–1152. doi: 10.1109/TAES.2014.120731
    [28]
    ALHUJAILI K, YU Xianxiang, CUI Guolong, et al. Spectrally compatible MIMO radar beampattern design under constant modulus constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4749–4766. doi: 10.1109/TAES.2020.3003976
    [29]
    王璐璐, 王宏强, 王满喜. 雷达目标检测的最优波形设计综述[J]. 雷达学报, 2016, 5(5): 487–498. doi: 10.12000/JR16084

    WANG Lulu, WANG Hongqiang, and WANG Manxi. An overview of radar waveform optimization for target detection[J]. Journal of Radar, 2016, 5(5): 487–498. doi: 10.12000/JR16084
    [30]
    PATTON L K and RIGLING B D. Autocorrelation constraints in radar waveform optimization for detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 951–968. doi: 10.1109/TAES.2012.6178041
    [31]
    HAN S H and LEE J H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission[J]. IEEE Wireless Communications, 2005, 12(2): 56–65. doi: 10.1109/MWC.2005.1421929
    [32]
    LI Jian, GUERCI J R, and XU Luzhou. Signal waveform's optimal-under-restriction design for active sensing[J]. IEEE Signal Processing Letters, 2006, 13(9): 565–568. doi: 10.1109/LSP.2006.874465
    [33]
    JONES A M, RIGLING B D, and RANGASWAMY M. Subspace approach to performance modelling of range-sidelobe suppressed waveforms[J]. IET Radar, Sonar & Navigation, 2017, 11(3): 466–473. doi: 10.1049/iet-rsn.2016.0283
    [34]
    MARČENKO V A and PASTUR L A. Distribution of eigenvalues for some sets of random matrices[J]. Mathematics of the USSR-Sbornik, 1967, 1(4): 457–483. doi: 10.1070/SM1967v001n04ABEH001994
    [35]
    GOODMAN N R. The distribution of the determinant of a complex wishart distributed matrix[J]. The Annals of Mathematical Statistics, 1963, 34(1): 178–180. doi: 10.1214/aoms/1177704251
    [36]
    FROST S W. Performance analysis of radar waveforms for congested spectrums[D]. [Master dissertation], Wright State University, 2011.
    [37]
    毛智能. 非连续谱抗模糊波形设计研究[D]. [博士论文], 哈尔滨工业大学, 2020.

    MAO Zhineng. Research on waveform design foramibgumty suppresson underdiscontinuous spectrum[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2020. doi: 10.27061/d.cnki.ghgdu.2020.002047.
    [38]
    ZHAO Dehua, WEI Yinsheng, and LIU Yongtan. Correlation performance analysis for waveforms with spectral notches[J]. IET Radar, Sonar & Navigation, 2017, 11(11): 1644–1651. doi: 10.1049/iet-rsn.2017.0080
    [39]
    WANG Guangtao and LU Yilong. Bounds on generalised integrated sidelobe level in waveforms with stopbands[J]. Electronics Letters, 2010, 46(23): 1561–1562. doi: 10.1049/el.2010.1876
    [40]
    WANG Guohua, MAI Chaoyun, SUN Jinping, et al. Sparse frequency waveform analysis and design based on ambiguity function theory[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 707–717. doi: 10.1049/iet-rsn.2015.0270
    [41]
    赵德华. 频谱拥堵环境下的自适应雷达波形设计研究[D]. [博士论文], 哈尔滨工业大学, 2018.

    ZHAO Dehua. Research on waveform desgn for adaptmve radar in spectrum congested environment[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2018.
    [42]
    ZHAO Dehua, WEI Yinsheng, and LIU Yongtan. Spectrum optimization via fft-based conjugate gradient method for unimodular sequence design[J]. Signal Processing, 2018, 142: 354–365. doi: 10.1016/j.sigpro.2017.07.035
    [43]
    GERLACH K, FREY M R, STEINER M J, et al. Spectral nulling on transmit via nonlinear FM radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1507–1515. doi: 10.1109/TAES.2011.5751276
    [44]
    OECHSLIN R, WELLIG P, HINRICHSEN S, et al. Cognitive radar parameter optimization in a congested spectrum environment[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018.
    [45]
    WEITZEL C E. RF power amplifiers for wireless communications[J]. IEEE Microwave Magazine, 2000, 1(1): 64. doi: 10.1109/MMW.2000.823830
    [46]
    JAKABOSKY J, BLUNT S D, and HIGGINS T. Ultra-low sidelobe waveform design via spectral shaping and LINC transmit architecture[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 2015.
    [47]
    KAY S M. Modern Spectral Estimation: Theory and Application[M]. Englewood Cliffs: Prentice Hall, 1988.
    [48]
    JACKSON L, KAY S, and VANKAYALAPATI N. Iterative method for nonlinear FM synthesis of radar signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 910–917. doi: 10.1109/TAES.2010.5461666
    [49]
    ZHUANG Shanna, HE Yapeng, and ZHU Xiaohua. Designing sparse frequency waveform with low range sidelobes for HFSWR[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 596–599.
    [50]
    HE Hao, LI Jian, and STOICA P. Waveform Design for Active Sensing Systems: A Computational Approach[M]. Cambridge: Cambridge University Press, 2012.
    [51]
    BIŞKIN O T and AKAY O. A new algorithm for designing sequences using stopband and correlation constraints[C]. 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2018: 1–4.
    [52]
    AUBRY A, CAROTENUTO V, and MAIO A D. Forcing multiple spectral compatibility constraints in radar waveforms[J]. IEEE Signal Processing Letters, 2016, 23(4): 483–487. doi: 10.1109/LSP.2016.2532739
    [53]
    ALDAYEL O, MONGA V, and RANGASWAMY M. Successive QCQP refinement for MIMO radar waveform design under practical constraints[J]. IEEE Transactions on Signal Processing, 2016, 64(14): 3760–3774. doi: 10.1109/TSP.2016.2552501
    [54]
    CUI Guolong, YU Xianxiang, FOGLIA G, et al. Quadratic optimization with similarity constraint for unimodular sequence synthesis[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4756–4769. doi: 10.1109/TSP.2017.2715010
    [55]
    YU Xianxiang, CUI Guolong, YANG Jing, et al. Quadratic optimization for unimodular sequence design via an ADPM framework[J]. IEEE Transactions on Signal Processing, 2020, 68: 3619–3634. doi: 10.1109/TSP.2020.2998637
    [56]
    GE Peng, CUI Guolong, KARBASI S M, et al. Cognitive radar sequence design under the spectral compatibility requirements[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 759–767. doi: 10.1049/iet-rsn.2016.0239
    [57]
    YANG Jing, CUI Guolong, YU Xianxiang, et al. Waveform design with spectral coexistence[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019.
    [58]
    LIANG J, SO H C, LI J, et al. Unimodular sequence design based on alternating direction method of multipliers[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5367–5381. doi: 10.1109/TSP.2016.2597123
    [59]
    ROWE W, STOICA P, and LI Jian. Spectrally constrained waveform design [sp Tips&Tricks][J]. IEEE Signal Processing Magazine, 2014, 31(3): 157–162. doi: 10.1109/MSP.2014.2301792
    [60]
    LIANG Junli, SO H C, LEUNG C S, et al. Waveform design with unit modulus and spectral shape constraints via Lagrange programming neural network[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1377–1386. doi: 10.1109/JSTSP.2015.2464178
    [61]
    TANG Bo and LIANG Junli. Efficient algorithms for synthesizing probing waveforms with desired spectral shapes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1174–1189. doi: 10.1109/TAES.2018.2876585
    [62]
    MAO Zhineng and WEI Yinsheng. Waveform optimisation for unambiguous Doppler extension[J]. IET Radar, Sonar & Navigation, 2019, 13(2): 290–299. doi: 10.1049/iet-rsn.2018.5061
    [63]
    GLADKOVA I. Analysis of stepped-frequency pulse train design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1251–1261. doi: 10.1109/TAES.2009.5310296
    [64]
    ZHAO Dehua, WEI Yinsheng, and LIU Yongtan. Design unimodular sequence train with low central and recurrent autocorrelation sidelobes via FFT-based cyclic algorithm[J]. Electronics Letters, 2017, 53(19): 1329–1331. doi: 10.1049/el.2017.2157
    [65]
    AUBRY A, CAROTENUTO V, DE MAIO A, et al. Cognitive radar waveform design for spectral compatibility[C]. 2016 Sensor Signal Processing for Defence (SSPD), Edinburgh, UK, 2016: 1–5.
    [66]
    AUBRY A, MAIO A D, HUANG Yongwei, et al. A new radar waveform design algorithm with improved feasibility for spectral coexistence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1029–1038. doi: 10.1109/TAES.2014.140093
    [67]
    TANG Bo, LI Jian, and LIANG Junli. Alternating direction method of multipliers for radar waveform design in spectrally crowded environments[J]. Signal Processing, 2018, 142: 398–402. doi: 10.1016/j.sigpro.2017.08.003
    [68]
    CHENG Ziyang, LIAO Bin, HE Zishu, et al. Spectrally compatible waveform design for MIMO radar with transmit beampattern formation[C]. 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 2018.
    [69]
    Alaee-Kerahroodi M, RAEI E, KUMAR S, et al. Coexistence of communications and cognitive MIMO radar: Waveform design and prototype[J]. arXiv preprint arXiv: 2103.11890, 2021.
    [70]
    MARTONE A and AMIN M. A view on radar and communication systems coexistence and dual functionality in the era of spectrum sensing[J]. Digital Signal Processing, 2021, 119: 103135.
    [71]
    DENG M, CHENG Z, and HE Z. Spectrally compatible waveform design for large-scale MIMO radar beampattern synthesis with One-Bit DACs[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022.
    [72]
    CHEN Ningkang, WEI Ping, GAO Lin, et al. Beampattern synthesis and spectral compatibility based MIMO radar waveform design[J]. Digital Signal Processing, 2021, 118: 103211. doi: 10.1016/j.dsp.2021.103211.
    [73]
    YAO Yu, LIU Haitao, MIAO Pu, et al. MIMO radar design for extended target detection in a spectrally crowded environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2021: 1–10. doi: 10.1109/TITS.2021.3127727
    [74]
    CHENG Ziyang, LIAO Bin, HE Zishu, et al. Spectrally compatible waveform design for MIMO radar in the presence of multiple targets[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3543–3555. doi: 10.1109/TSP.2018.2833818
    [75]
    SHI Shengnan, WANG Zhaoyi, HE Zishu, et al. Spectrally compatible waveform design for MIMO radar with ISL and PAPR constraints[J]. IEEE Sensors Journal, 2020, 20(5): 2368–2377. doi: 10.1109/JSEN.2019.2951740
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1675) PDF downloads(293) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint