Volume 10 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
WANG Yingjie, WANG Robert, YU Weidong, et al. See-Earth: SAR constellation with dense time-series for multi-dimensional environmental monitoring of the earth[J]. Journal of Radars, 2021, 10(6): 842–864. doi: 10.12000/JR21176
Citation: WANG Yingjie, WANG Robert, YU Weidong, et al. See-Earth: SAR constellation with dense time-series for multi-dimensional environmental monitoring of the earth[J]. Journal of Radars, 2021, 10(6): 842–864. doi: 10.12000/JR21176

See-Earth: SAR Constellation with Dense Time-SEries for Multi-dimensional Environmental Monitoring of the Earth

doi: 10.12000/JR21176
Funds:  The National Natural Science Foundation of China (61825106)
More Information
  • Corresponding author: WANG Robert, yuwang@mail.ie.ac.cn; YU Weidong, ywd@mail.ie.ac.cn
  • Received Date: 2021-11-11
  • Accepted Date: 2021-12-17
  • Rev Recd Date: 2021-12-17
  • Available Online: 2021-12-21
  • Publish Date: 2021-12-28
  • The limitations of satellite versatility, application dimensions, and wide-area observation efficiency are major issues impeding the development of Chinese spaceborne Synthetic Aperture Radar (SAR). China lacks a satellite system that can realize long-term, stable, and high-performance environmental dynamic monitoring oriented to the world. As the international environment becomes increasingly complex, China urgently needs to develop a SAR satellite system for global dynamic environmental monitoring to achieve large-scale, high-revisit, long-term, stable, and high-precision observations. This paper proposes a SAR Constellation with Dense Time-S E ries for MultiDimensional E nvironmental Monitoring of the Earth (See-Earth) plan. In addition, the system conception, technical architectures, performance analysis, application potential, and new system expansion are discussed.

     

  • loading
  • [1]
    邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [2]
    杨魁, 杨建兵, 江冰茹. Sentinel-1卫星综述[J]. 城市勘测, 2015(2): 24–27. doi: 10.3969/j.issn.1672-8262.2015.02.006

    YANG Kui, YANG Jianbing, and JIANG Bingru. Sentinel-1 satellite overview[J]. Urban Geotechnical Investigation &Surveying, 2015(2): 24–27. doi: 10.3969/j.issn.1672-8262.2015.02.006
    [3]
    MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the earth’s surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8–23. doi: 10.1109/MGRS.2015.2437353
    [4]
    Rosen P. Planned data products and science processing paradigm for the proposed NASA-ISRO SAR mission[J]. Journal of Computational Chemistry, 2014, 5(5): 486–499.
    [5]
    MOTOHKA T, KANKAKU Y, MIURA S, et al. Alos-4 L-band SAR mission and observation[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 5271–5273. doi: 10.1109/IGARSS.2019.8898169.
    [6]
    KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi: 10.1109/LGRS.2004.832700
    [7]
    KRIEGER G, GEBERT N, and MOREIRA A. SAR signal reconstruction from non-uniform displaced phase centre sampling[C]. IGARSS 2004-2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 1763–1766.
    [8]
    JING Wei, XING Mengdao, QIU Chengwei, et al. Unambiguous reconstruction and high-resolution imaging for multiple-channel SAR and airborne experiment results[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 102–106. doi: 10.1109/LGRS.2008.2008825
    [9]
    ZHAO Shuo, WANG R, DENG Yunkai, et al. Modifications on multichannel reconstruction algorithm for SAR processing based on periodic nonuniform sampling theory and nonuniform fast Fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 4998–5006. doi: 10.1109/JSTARS.2015.2421303
    [10]
    FAN Feng, DANG Hongxing, TAN Xiaomin, et al. An improved scheme of Digital Beam-Forming in elevation for spaceborne SAR[C]. IET International Radar Conference 2013, Xi’an, China, 2013: 1–6.
    [11]
    WANG Wei, WANG R, DENG Yunkai, et al. An improved processing scheme of digital beam-forming in elevation for reducing resource occupation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 309–313. doi: 10.1109/LGRS.2015.2508098
    [12]
    GEBERT N, KRIEGER G, and MOREIRA A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. doi: 10.1109/TAES.2009.5089542
    [13]
    ZHAO Qingchao, ZHANG Yi, WANG Wei, et al. On the frequency dispersion in DBF SAR and digital scalloped beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3619–3632. doi: 10.1109/TGRS.2019.2958863
    [14]
    ZHOU Yashi, WANG Wei, CHEN Zhen, et al. Digital Beamforming synthetic aperture radar (DBSAR): Experiments and performance analysis in support of 16-channel airborne X-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6784–6798. doi: 10.1109/TGRS.2020.3027691
    [15]
    WANG R, WANG Wei, SHAO Yunfeng, et al. First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 842–849. doi: 10.1109/TGRS.2015.2467176
    [16]
    HOU Wentao, ZHAO Fengjun, LIU Xiuqing, et al. A unified framework for comparing the classification performance between quad-, compact-, and dual-polarimetric SARs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204814. doi: 10.1109/TGRS.2021.3067314
    [17]
    ZHAO Pengfei, DENG Yunkai, WANG Wei, et al. Ambiguity suppression based on joint optimization for multichannel hybrid and ±π/4 Quad-Pol SAR systems[J]. Remote Sensing, 2021, 13(10): 1907. doi: 10.3390/rs13101907
    [18]
    LI Peng, ZHAO Fengjun, LIU Dacheng, et al. First demonstration of hybrid Quad-Pol SAR based on P-band airborne experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021: 1–16. doi: 10.1109/TGRS.2021.3084959
    [19]
    FREEMAN A, JOHNSON W T K, HUNEYCUTT B, et al. The “Myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320–324. doi: 10.1109/36.823926
    [20]
    邓云凯. 星载高分辨率宽幅SAR成像技术[M]. 北京: 科学出版社, 2020.

    DENG Yunkai. Spaceborne High-Resolution Wide-Swath SAR Imaging Technology[M]. Beijing: Science Press, 2020.
    [21]
    YOUNIS M, ROMMEL T, BORDONI F, et al. On the pulse extension loss in digital beamforming SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1436–1440. doi: 10.1109/LGRS.2015.2406815
    [22]
    SUESS M and WIESBECK W. Side-looking synthetic aperture radar system[Z]. Euro Patent EP 1 241 487 A1, 2001.
    [23]
    PATYUCHENKO A, ROMMEL T, LASKOWSKI P, et al. Digital beam-forming reconfigurable radar system demonstrator[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 1541–1544. doi: 10.1109/IGARSS.2012.6351103.
    [24]
    RINCON R F, VEGA M A, BUENFIL M, et al. NASA’s L-band digital beamforming synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3622–3628. doi: 10.1109/TGRS.2011.2157971
    [25]
    洪文. 基于混合极化架构的极化SAR: 原理与应用(中英文)[J]. 雷达学报, 2016, 5(6): 559–595. doi: 10.12000/JR16074

    HONG Wen. Hybrid-polarity architecture based polarimetric SAR: Principles and applications[J]. Journal of Radars, 2016, 5(6): 559–595. doi: 10.12000/JR16074
    [26]
    LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: CRC Press, 2009.
    [27]
    RANEY R K, FREEMAN A, and JORDAN R L. Improved range ambiguity performance in Quad-Pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 349–356. doi: 10.1109/TGRS.2011.2121075
    [28]
    SOUYRIS J C and MINGOT S. Polarimetry based on one transmitting and two receiving polarizations: The π/4 mode[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 629–631. doi: 10.1109/IGARSS.2002.1025127.
    [29]
    SOUYRIS J C, IMBO P, FJORTOFT R, et al. Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634–646. doi: 10.1109/TGRS.2004.842486
    [30]
    OHKI M and SHIMADA M. Large-area land use and land cover classification with quad, compact, and dual polarization SAR data by PALSAR-2[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5550–5557. doi: 10.1109/TGRS.2018.2819694
    [31]
    DABBOOR M, MONTPETIT B, and HOWELL S. Assessment of the high resolution SAR mode of the RADARSAT constellation mission for first year ice and multiyear ice characterization[J]. Remote Sensing, 2018, 10(4): 594. doi: 10.3390/rs10040594
    [32]
    RANEY R K. Hybrid dual-polarization synthetic aperture radar[J]. Remote Sensing, 2019, 11(13): 1521. doi: 10.3390/rs11131521
    [33]
    RANEY R K. Comparing compact and quadrature polarimetric SAR performance[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 861–864. doi: 10.1109/LGRS.2016.2550863
    [34]
    YANG Ce, OU Naiming, DENG Yunkai, et al. Pattern synthesis algorithm for range ambiguity suppression in the Lt-1 mission via sequential convex optimizations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021: 1–13. doi: 10.1109/TGRS.2021.3099132
    [35]
    ISHIMARU A, KUGA Y, LIU Jun, et al. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz[J]. Radio Science, 1999, 34(1): 257–268. doi: 10.1029/1998RS900021
    [36]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data[M]. Boston: Artech House, 2004: 660.
    [37]
    BAMLER R and EINEDER M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 151–155. doi: 10.1109/LGRS.2004.843203
    [38]
    JAKOWATZ C V JR, EICHEL P H, and GHIGLIA D C. Autofocus of SAR imagery degraded by ionospheric-induced phase errors[C]. Proceedings of SPIE 1101, Millimeter Wave and Synthetic Aperture Radar, Orlando, USA, 1989: 46–52. doi: 10.1117/12.960513.
    [39]
    KNEPP D L and GROVES K M. The effect of ionospheric scintillation on phase gradient autofocus processing of synthetic aperture radar[C]. 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 2013: 1–4. doi: 10.1109/URSIGASS.2011.6050878.
    [40]
    WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752
    [41]
    FREEMAN A. Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1617–1624. doi: 10.1109/TGRS.2004.830161
    [42]
    QUEGAN S and LOMAS M R. The impact of system effects on estimates of faraday rotation from synthetic aperture radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4284–4298. doi: 10.1109/TGRS.2015.2395076
    [43]
    JEHLE M, RUEGG M, ZUBERBUHLER L, et al. Measurement of ionospheric faraday rotation in simulated and real spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1512–1523. doi: 10.1109/TGRS.2008.2004710
    [44]
    刘梦. 已同中国签订共建“一带一路”合作文件的国家一览[EB/OL]. https://www.yidaiyilu.gov.cn/xwzx/roll/77298.htm, 2021.

    LIU Meng. List of countries that have signed cooperation documents with China to jointly build the “Belt and Road”[EB/OL]. https://www.yidaiyilu.gov.cn/xwzx/roll/77298.htm, 2021.
    [45]
    HENDERSON F M and LEWIS A J. Radar detection of wetland ecosystems: A review[J]. International Journal of Remote Sensing, 2008, 29(20): 5809–5835. doi: 10.1080/01431160801958405
    [46]
    李增元, 赵磊, 李堃, 等. 合成孔径雷达森林资源监测技术研究综述[J]. 南京信息工程大学学报, 2020, 12(2): 150–158. doi: 10.13878/j.cnki.jnuist.2020.02.002

    LI Zengyuan, ZHAO Lei, LI Kun, et al. A survey of developments on forest resources monitoring technology of synthetic aperture radar[J]. Journal of Nanjing University of Information Science &Technology, 2020, 12(2): 150–158. doi: 10.13878/j.cnki.jnuist.2020.02.002
    [47]
    HAYASHI M, MOTOHKA T, and SAWADA Y. Aboveground biomass mapping using ALOS-2/PALSAR-2 time-series images for Borneo's forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 5167–5177. doi: 10.1109/JSTARS.2019.2957549
    [48]
    JIA Hongying, WANG Yingjie, GE Daqing, et al. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)[J]. Remote Sensing of Environment, 2020, 247: 111899. doi: 10.1016/j.rse.2020.111899
    [49]
    陆萍萍, 杜康宁, 禹卫东, 等. 基于特征融合的HJ-1-C SAR图像道路特征提取算法[J]. 雷达学报, 2014, 3(3): 352–360. doi: 10.3724/SP.J.1300.2013.13059

    LU Pingping, DU Kangning, YU Weidong, et al. Feature fusion based road extraction for HJ-1-C SAR image[J]. Journal of Radars, 2014, 3(3): 352–360. doi: 10.3724/SP.J.1300.2013.13059
    [50]
    YANG Rong, PAN Zhenru, JIA Xiaoxue, et al. A novel CNN-based detector for ship detection based on rotatable bounding box in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1938–1958. doi: 10.1109/JSTARS.2021.3049851
    [51]
    CHEN Shanshan, WANG Haipeng, XU Feng, et al. Automatic recognition of isolated buildings on single-aspect SAR image using range detector[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 219–223. doi: 10.1109/LGRS.2014.2327125
    [52]
    刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1): 62–74. doi: 10.11834/jrs.20154108

    LIU Qian, YANG Le, LIU Qinhuo, et al. Review of forest above ground biomass inversion methods based on remote sensing technology[J]. Journal of Remote Sensing, 2015, 19(1): 62–74. doi: 10.11834/jrs.20154108
    [53]
    KRAUS T, KRIEGER G, BACHMANN M, et al. Spaceborne demonstration of distributed SAR imaging with TerraSAR-X and TanDEM-X[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1731–1735. doi: 10.1109/LGRS.2019.2907371
    [54]
    TOPORKOV J V, PERKOVIC D, FARQUHARSON G, et al. Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2494–2502. doi: 10.1109/TGRS.2005.848603
    [55]
    FRASIER S J and CAMPS A J. Dual-beam interferometry for ocean surface current vector mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 401–414. doi: 10.1109/36.905248
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2370) PDF downloads(211) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint