Volume 10 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
WANG Junjie, FENG Dejun, WANG Zhisong, et al. Synthetic aperture rader imaging characteristics of electronically controlled time-varying electromagnetic materials[J]. Journal of Radars, 2021, 10(6): 865–873. doi: 10.12000/JR21104
Citation: WANG Junjie, FENG Dejun, WANG Zhisong, et al. Synthetic aperture rader imaging characteristics of electronically controlled time-varying electromagnetic materials[J]. Journal of Radars, 2021, 10(6): 865–873. doi: 10.12000/JR21104

Synthetic Aperture Rader Imaging Characteristics of Electronically Controlled Time-varying Electromagnetic Materials

doi: 10.12000/JR21104
Funds:  The National Nature Science Foundation of China (62071475, 61890542, 62001481)
More Information
  • Corresponding author: WANG Junjie, wangjunjie14@vip.qq.com; FENG Dejun, fdj117@sina.com
  • Received Date: 2021-07-22
  • Rev Recd Date: 2021-10-14
  • Available Online: 2021-10-20
  • Publish Date: 2021-11-04
  • Micromotion targets can enable microDoppler modulation on electromagnetic waves owing to their motion components in different directions, resulting in the defocusing effects of the target imaging features along the azimuth direction. This phenomenon has been widely considered and investigated in target recognition and antirecognition. As a research hotspot, electronically controlled time-varying electromagnetic materials have fast modulation characteristics; however, their imaging characteristics have not received much attention. This study investigates the Synthetic Aperture Radar (SAR) modulation characteristics along the range direction of electronically controlled time-varying electromagnetic materials. Then, this study establishes the time-varying electromagnetic material spectrum transformation model and analyzes the SAR target characteristic control principle. Taking the Phase-Switched Screen (PSS) as an example, a nonperiodic PSS phase modulation model is established, and its spectrum has continuous frequency shift characteristics. On this basis, the influence of continuous frequency shift modulation induced by nonperiodic PSS on SAR was further discussed and the defocusing phenomenon of the target along the range direction was detected. Through the simulation of measured data, the validity of the proposed theoretical method is verified.

     

  • loading
  • [1]
    CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    [2]
    庄钊文, 刘永祥, 黎湘. 目标微动特性研究进展[J]. 电子学报, 2007, 35(3): 520–525. doi: 10.3321/j.issn:0372-2112.2007.03.028

    ZHUANG Zhaowen, LIU Yongxiang, and LI Xiang. The achievements of target characteristic with micro-motion[J]. Acta Electronica Sinica, 2007, 35(3): 520–525. doi: 10.3321/j.issn:0372-2112.2007.03.028
    [3]
    吴晓芳, 刘阳, 王雪松, 等. 旋转微动目标的SAR成像特性分析[J]. 宇航学报, 2010, 31(4): 1181–1189. doi: 10.3873/j.issn.1000-1328.2010.04.039

    WU Xiaofang, LIU Yang, WANG Xuesong, et al. Analysis of SAR imaging characteristics of targets with rotational micro-motion[J]. Journal of Astronautics, 2010, 31(4): 1181–1189. doi: 10.3873/j.issn.1000-1328.2010.04.039
    [4]
    白雪茹, 孙光才, 周峰, 等. 基于旋转角反射器的ISAR干扰新方法[J]. 电波科学学报, 2008, 23(5): 867–872. doi: 10.13443/j.cjors.2008.05.019

    BAI Xueru, SUN Guangcai, ZHOU Feng, et al. A novel ISAR jamming method based on rotating angular reflectors[J]. Chinese Journal of Radio Science, 2008, 23(5): 867–872. doi: 10.13443/j.cjors.2008.05.019
    [5]
    PENDRY J B. Focus issue: Negative refraction and metamaterials[J]. Optics Express, 2003, 11(7): 639. doi: 10.1364/OE.11.000639
    [6]
    YEN T J, PADILLA W J, FANG N, et al. Terahertz magnetic response from artificial materials[J]. Science, 2004, 303(5663): 1494–1496. doi: 10.1126/science.1094025
    [7]
    PADILLA W J. Group theoretical description of artificial electromagnetic metamaterials[J]. Optics Express, 2007, 15(4): 1639–1646. doi: 10.1364/OE.15.001639
    [8]
    TENNANT A and CHAMBERS B. Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface[J]. Smart materials and Structures, 2004, 13(1): 122–125. doi: 10.1088/0964-1726/13/1/013
    [9]
    HUANG Cheng, ZHAO Bo, SONG Jiakun, et al. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3593–3598. doi: 10.1109/TAP.2020.3037813
    [10]
    CHAMBERS B and TENNANT A. The phase-switched screen[J]. IEEE Antennas and Propagation Magazine, 2004, 46(6): 23–27. doi: 10.1109/MAP.2004.1396733
    [11]
    RAMACCIA D, SOUNAS D L, ALÙ A, et al. Phase-induced frequency conversion and Doppler effect with time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1607–1617. doi: 10.1109/TAP.2019.2952469
    [12]
    SAIKIA M, SRIVASTAVA K V, and RAMAKRISHNA A S. Frequency-shifted reflection of electromagnetic waves using a time-modulated active tunable frequency-selective surface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 2937–2944. doi: 10.1109/TAP.2019.2951494
    [13]
    ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    [14]
    JIA Yongtao, LIU Ying, GUO Y J, et al. A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3291–3295. doi: 10.1109/TAP.2017.2694879
    [15]
    ZAKER R and SADEGHZADEH A. A low-profile design of polarization rotation reflective surface for wideband RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1794–1798. doi: 10.1109/LAWP.2019.2930130
    [16]
    CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    [17]
    ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
    [18]
    杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137

    YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137
    [19]
    LUO Yong, KIKUTA K, HAN Zhengli, et al. An active metamaterial antenna with mems-modulated scanning radiation beams[J]. IEEE Electron Device Letters, 2016, 37(7): 920–923. doi: 10.1109/LED.2016.2565559
    [20]
    BRYANT A T, LU Liqing, SANTI E, et al. Physical modeling of fast p-i-n diodes with carrier lifetime zoning, Part I: Device model[J]. IEEE Transactions on Power Electrons, 2008, 23(1): 189–197. doi: 10.1109/TPEL.2007.911823
    [21]
    XU Letao, FENG Dejun, and WANG Xuesong. Matched-filter properties of linear-frequency-modulation radar signal reflected from a phase-switched screen[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 318–324. doi: 10.1049/iet-rsn.2015.0182
    [22]
    XU Letao, FENG Dejun, and WANG Xuesong. High-resolution range profile deception method based on phase-switched screen[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1665–1668. doi: 10.1109/LAWP.2016.2521778
    [23]
    WANG Junjie, FENG Dejun, XU Zhiming, et al. Time-domain digital-coding active frequency selective surface absorber/reflector and its imaging characteristics[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3322–3331. doi: 10.1109/TAP.2020.3037757
    [24]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 123–134.

    BAO Zheng, XING Mengdao, WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005: 123–134.
    [25]
    YASIR S, 杨国敏, 徐丰. 四叶草形超宽带漫散射编码超表面[J]. 雷达学报, 2021, 10(3): 382–390. doi: 10.12000/JR21061

    YASIR S, YANG Guomin, and XU Feng. A four-leaf clover-shaped coding metasurface for ultra-wideband diffusion-like scattering[J]. Journal of Radars, 2021, 10(3): 382–390. doi: 10.12000/JR21061
    [26]
    张然, 冯德军, 徐乐涛. 基于Salisbury屏的二面角设计及其极化特性分析[J]. 雷达学报, 2016, 5(6): 658–665. doi: 10.12000/JR16055

    ZHANG Ran, FENG Dejun, and XU Letao. Design and polarization characteristics analysis of dihedral based on Salisbury screen[J]. Journal of Radars, 2016, 5(6): 658–665. doi: 10.12000/JR16055
    [27]
    WEI Yue, SHEN Gangxiang, and BOSE S K. Span-restorable elastic optical networks under different spectrum conversion capabilities[J]. IEEE Transactions on Reliability, 2014, 63(2): 401–411. doi: 10.1109/TR.2014.2313806
    [28]
    TENNANT A. Reflection properties of a phase modulating planar screen[J]. Electronics Letters, 1997, 33(21): 1768–1769. doi: 10.1049/el:19971160
    [29]
    CHAMBERS B and TENNANT A. Reflection of radar signals from multiple phase-modulated surfaces[J]. IET Radar, Sonar & Navigation, 2007, 1(2): 142–148. doi: 10.1049/iet-rsn:20060078
    [30]
    SHULMAN N and FEDER M. Random coding techniques for nonrandom codes[J]. IEEE Transactions on Information Theory, 1999, 45(6): 2101–2104. doi: 10.1109/18.782147
    [31]
    TAI Ning, CUI Kaibo, WANG Chao, et al. The design of a novel coherent noise jammer against LFM radar[J]. IEICE Electronics Express, 2016, 13(21): 1–12. doi: 10.1587/elex.13.20160924
    [32]
    WU Qihua, LIU Xiaobin, LIU Jin, et al. A radar imaging method using nonperiodic interrupted sampling linear frequency modulation signal[J]. IEEE Sensors Journal, 2018, 18(20): 8294–8302. doi: 10.1109/JSEN.2018.2865531
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1283) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint