YIN Jiapeng, LI Jianbing, PANG Chen, et al. A radio frequency interference mitigation method for polarimetric Doppler weather radar[J]. Journal of Radars, 2021, 10(6): 905–918. doi: 10.12000/JR21102
Citation: YIN Jiapeng, LI Jianbing, PANG Chen, et al. A radio frequency interference mitigation method for polarimetric Doppler weather radar[J]. Journal of Radars, 2021, 10(6): 905–918. doi: 10.12000/JR21102

A Radio Frequency Interference Mitigation Method for Polarimetric Doppler Weather Radars

DOI: 10.12000/JR21102 CSTR: 32380.14.JR21102
Funds:  The National Natural Science Foundation of China (61971429, 61771479), Postdoctoral International Exchange Program (48132), Science and Technology Innovation Program of Hunan Province (2020RC2042), The Scientific Research Program of the National University of Defense Technology (ZK21-25)
More Information
  • Corresponding author: YIN Jiapeng, yinjiapeng@nudt.edu.cn
  • Received Date: 2021-07-22
  • Accepted Date: 2021-11-23
  • Rev Recd Date: 2021-11-22
  • Available Online: 2021-11-25
  • Publish Date: 2021-12-28
  • To mitigate Radio Frequency Interference (RFI) for polarimetric Doppler weather radars, this paper proposes to use spectral polarimetric filters. Polarimetric weather radars can be divided into two basic categories: Simultaneously Transmitting and Simultaneously Receiving (STSR) and Alternately Transmitting and Simultaneously Receiving (ATSR). First, the real RFI measurements from an operational C-band STSR weather radar help characterize the temporal, spectral and polarimetric features of RFI. Then, RFI is simulated in an X-band ATSR radar to quantify the performances of spectral polarimetric filters. Overall, spectral polarimetric filters can keep the precipitation and remove RFI in an ATSR radar. Finally, the data division method is put forward for STSR radars by mimicking the ATSR measurements. Good performance in RFI mitigation is also verified by using the same spectral polarimetric filters.

     

  • [1]
    DOVIAK R J and ZRNIĆ D S. Doppler Radar and Weather Observations[M]. Mineola: Dover Publications, 2006.
    [2]
    BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2001.
    [3]
    YIN Jiapeng. Advanced techniques in clutter mitigation and calibration for weather radars[D]. [Ph. D. dissertation], Delft University of Technology, 2019.
    [4]
    PALMER R, WHELAN D, BODINE D, et al. The need for spectrum and the impact on weather observations[J]. Bulletin of the American Meteorological Society, 2021, 102(7): E1402–E1407. doi: 10.1175/BAMS-D-21-0009.1
    [5]
    SALTIKOFF E, CHO J Y N, TRISTANT P, et al. The threat to weather radars by wireless technology[J]. Bulletin of the American Meteorological Society, 2016, 97(7): 1159–1167. doi: 10.1175/BAMS-D-15-00048.1
    [6]
    CHO J Y N. A new radio frequency interference filter for weather radars[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(7): 1393–1406. doi: 10.1175/JTECH-D-17-0028.1
    [7]
    CARROLL J E, SANDERS F H, SOLE R L, et al. Case study: Investigation of interference into 5 GHz weather radars from unlicensed national information infrastructure devices[R]. NTIA Technical Report TR-11-473, 2010.
    [8]
    VACCARONO M, CHANDRASEKAR C V, BECHINI R, et al. Survey on electromagnetic interference in weather radars in northwestern Italy[J]. Environments, 2019, 6(12): 126. doi: 10.3390/environments6120126
    [9]
    LAKE J L, YEARY M, and CURTIS C D. Adaptive radio frequency interference mitigation techniques at the national weather radar testbed: First results[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 840–845.
    [10]
    ROJAS L C, MOISSEEV D N, CHANDRASEKAR V, et al. Dual-polarization spectral filter for radio frequency interference suppression[C]. The 7th European Conference on Radar in Meteorology and Hydrology, Toulouse, France, 2012.
    [11]
    YANOVSKY F J, RUSSCHENBERG H W J, and UNAL C M H. Retrieval of information about turbulence in rain by using Doppler-polarimetric Radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(2): 444–450. doi: 10.1109/TMTT.2004.840772
    [12]
    YIN Jiapeng, UNAL C M H, and RUSSCHENBERG H W J. Narrow-band clutter mitigation in spectral polarimetric weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4655–4667. doi: 10.1109/TGRS.2017.2696263
    [13]
    YIN Jiapeng, UNAL C, and RUSSCHENBERG H. Object-orientated filter design in spectral domain for polarimetric weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 2725–2740. doi: 10.1109/TGRS.2018.2876632
    [14]
    MELNIKOV V M and ZRNIĆ D S. On the alternate transmission mode for polarimetric phased array weather radar[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(2): 220–233. doi: 10.1175/JTECH-D-13-00176.1
    [15]
    HURTADO M and NEHORAI A. Polarimetric detection of targets in heavy inhomogeneous clutter[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1349–1361. doi: 10.1109/TSP.2007.909046
    [16]
    FIGUERAS I VENTURA J. Design of a high resolution X-band Doppler polarimetric weather radar[D]. [Ph. D. dissertation], Delft University of Technology, 2009.
    [17]
    FULTON C, HERD J, KARIMKASHI S, et al. Dual-polarization challenges in weather radar requirements for multifunction phased array radar[C]. 2013 IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2013: 494–501.
    [18]
    ZRNIĆ D S, ZHANG Guifu, and DOVIAK R J. Bias correction and Doppler measurement for polarimetric phased-array radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 843–853. doi: 10.1109/TGRS.2010.2057436
    [19]
    IVIĆ I R, CURTIS C, and TORRES S M. Radial-based noise power estimation for weather radars[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(12): 2737–2753. doi: 10.1175/JTECH-D-13-00008.1
    [20]
    BACHMANN S and ZRNIĆ D. Spectral density of polarimetric variables separating biological scatterers in the VAD display[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(7): 1186–1198. doi: 10.1175/JTECH2043.1
    [21]
    MOISSEEV D N and CHANDRASEKAR V. Polarimetric spectral filter for adaptive clutter and noise suppression[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(2): 215–228. doi: 10.1175/2008JTECHA1119.1
  • Cited by

    Periodical cited type(6)

    1. 安孟昀,殷加鹏,黄建开,李永祯,王雪松. 一种基于谱连续的极化-多普勒气象雷达信号重构方法. 系统工程与电子技术. 2024(07): 2285-2293 .
    2. 聂林,韦顺军,李佳慧,张浩,师君,王谋,陈思远,张鑫焱. 基于区域特征细化感知学习的星载SAR图像有源压制干扰抑制方法. 雷达学报. 2024(05): 985-1003 . 本站查看
    3. 李静,华夏,刘佳,丁妍. 基于EMD和小波包变换的天气雷达回波去噪方法. 自动化技术与应用. 2024(10): 108-111 .
    4. 万鹏程,冯为可,童宁宁,韦伟. 一种面向时变射频干扰的时频特征预测网络. 西北工业大学学报. 2023(03): 587-594 .
    5. 董淑仙,吴耀君,方文,全英汇. 频率捷变雷达联合模糊C均值抗间歇采样干扰. 雷达学报. 2022(02): 289-300 . 本站查看
    6. 安孟昀,殷加鹏,黄建开,庞晨,李永祯,王雪松. 一种双极化气象雷达自适应谱极化滤波方法. 雷达学报. 2022(03): 408-417 . 本站查看

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2495) PDF downloads(179) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint