Volume 10 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
NIAN Yiheng, ZHOU Ningning, ZHU Shitao, et al. Differential coincidence imaging based on randomly modulated metamaterial surface[J]. Journal of Radars, 2021, 10(2): 296–303. doi: 10.12000/JR20136
Citation: NIAN Yiheng, ZHOU Ningning, ZHU Shitao, et al. Differential coincidence imaging based on randomly modulated metamaterial surface[J]. Journal of Radars, 2021, 10(2): 296–303. doi: 10.12000/JR20136

Differential Coincidence Imaging Based on a Randomly Modulated Metamaterial Surface

doi: 10.12000/JR20136
Funds:  The National Natural Science Foundation of China (62071371), The Key Laboratory of High-Speed Circuit Design and EMC Ministry of Education (LHJJ/2020-04), The National Key Lab of Radar Signal Processing
More Information
  • Corresponding author: ZHU Shitao, shitaozhu@xjtu.edu.cn
  • Received Date: 2020-11-01
  • Rev Recd Date: 2021-01-11
  • Available Online: 2021-01-29
  • Publish Date: 2021-04-28
  • The coincidence imaging system based on a metamaterial surface solves the problem of low detection efficiency. Nevertheless, the number of effective imaging points is limited owing to the lack of the detection mode. To solve this problem, based on the first-order statistical characteristics of a reference-radiation field, a correlation-imaging signal model based on a randomly-modulated metamaterial surface is established, and the imaging error is analyzed. This study presents a robust coincidence imaging called Differential Coincidence Imaging (DCI), which uses the differential of different modes to form a new detection mode. The DCI analysis proves that it can improve the imaging quality. At the same time, the resolution of a special DCI method called the Gradient Coincidence Imaging (GCI) method is analyzed, which effectively improves the ability of extracting a target edge. With the special design of a metasurface unit, the edge information of a target can be extracted directly in the imaging process without obtaining an image. Finally, the proposed methods are validated through simulation experiments.

     

  • loading
  • [1]
    刘永坦. 雷达成像技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 1999.

    LIU Yongtan. Radar Imaging Technology[M]. Harbin: Harbin Institute of Technology Press, 1999.
    [2]
    WILEY C A. Synthetic aperture radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(3): 440–443. doi: 10.1109/TAES.1985.310578
    [3]
    PRICKETT M J and CHEN C C. Principles of inverse synthetic aperture radar/ISAR/ imaging[C]. IEEE Electronics and Aerospace Systems Conference, New York, 国家, 1980: 340–345.
    [4]
    ZHAO Chengqiang, GONG Wenlin, CHEN Mingliang, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14): 141123. doi: 10.1063/1.4757874
    [5]
    LI Dongze, LI Xiang, QIN Yuliang, et al. Radar coincidence imaging: An instantaneous imaging technique with stochastic signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2261–2277. doi: 10.1109/TGRS.2013.2258929
    [6]
    HE Yuchen, ZHU Shitao, DONG Guoxiang, et al. Resolution analysis of spatial modulation coincidence imaging based on reflective surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3762–3771. doi: 10.1109/TGRS.2018.2810145
    [7]
    IMANI M F, GOLLUB J N, YURDUSEVEN O, et al. Review of metasurface antennas for computational microwave imaging[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1860–1875. doi: 10.1109/TAP.2020.2968795
    [8]
    IMANI M F, SLEASMAN T, and SMITH D R. Two-dimensional dynamic metasurface apertures for computational microwave imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2299–2303. doi: 10.1109/LAWP.2018.2873131
    [9]
    SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980. doi: 10.1126/science.1133628
    [10]
    ZHU Shitao, ZHAO Mengran, DONG Xiaoli, et al. Differential coincidence imaging with frequency diverse aperture[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(6): 964–968. doi: 10.1109/LAWP.2018.2827120
    [11]
    周阳. 基于人工电磁超表面的电磁散射控制机理与应用研究[D]. [博士论文], 电子科技大学, 2019: 35–36.

    ZHOU Yang. Mechanism and application research of electromagnetic scattering control based on artificial metasurfaces[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2019: 35–36.
    [12]
    张光义, 赵玉洁. 相控阵雷达技术[M]. 北京: 电子工业出版社, 2006.

    ZHANG Guangyi and ZHAO Yujie. Phased Array Radar Technology[M]. Beijing: Publishing house of Electronic industry, 2006.
    [13]
    YUAN Sheng, XIANG Dong, LIU Xuemei, et al. Edge detection based on computational ghost imaging with structured illuminations[J]. Optics Communications, 2018, 410: 350–355. doi: 10.1016/j.optcom.2017.10.016
    [14]
    LIU Xuefeng, YAO Xuri, LAN Raoming, et al. Edge detection based on gradient ghost imaging[J]. Optics Express, 2015, 23(26): 33802–33811.
    [15]
    任红豆. 基于鬼成像的边缘检测方法研究[D]. [硕士论文], 南京邮电大学, 2019: 18–19.

    REN Hongdou. Application of edge detection on ghost imaging[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2019: 18–19.
    [16]
    CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218.
    [17]
    ZHU Shitao, ZHANG Anxue, XU Zhuo, et al. Radar coincidence imaging with random microwave source[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1239–1242. doi: 10.1109/LAWP.2015.2399977
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1291) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint