Volume 6 Issue 4
Sep.  2017
Turn off MathJax
Article Contents
Ye Kai, Yu Weidong, Wang Wei. Investigation on Processing Scheme for MIMO SAR with STSO Chirp Waveforms[J]. Journal of Radars, 2017, 6(4): 376-387. doi: 10.12000/JR17048
Citation: Ye Kai, Yu Weidong, Wang Wei. Investigation on Processing Scheme for MIMO SAR with STSO Chirp Waveforms[J]. Journal of Radars, 2017, 6(4): 376-387. doi: 10.12000/JR17048

Investigation on Processing Scheme for MIMO SAR with STSO Chirp Waveforms

DOI: 10.12000/JR17048
Funds:  The National Ministries Foundation
  • Received Date: 2017-04-19
  • Rev Recd Date: 2017-06-07
  • Publish Date: 2017-08-28
  • This study presents a novel processing scheme for Multiple-Input Multiple-Output (MIMO) Synthetic Aperture Radar (SAR) system with Short-Term Shift-Orthogonal (STSO) chirp waveforms to enhance its high-resolution wide-swath mapping capability. Taking advantage of multi-beam digital beamforming techniques in elevation, the STSO chirp waveforms can be efficiently separated from mixed echo signals. According to the geometry model and the antenna architecture of MIMO SAR system, the modified multichannel reconstruction matrix is used to reconstruct the separated signals in azimuth. In addition, the reconstruction data can be imaged via conventional SAR algorithm. Simulation experiments are conducted on both point targets and distributed targets, the results of which indicate that the proposed scheme can effectively suppress the mutual interferences between the STSO waveforms and that it has good imaging performance.

     

  • loading
  • [1]
    Cumming I G and Wong F H. Digital Processing of Synth-etic Aperture Radar Data: Algorithms and Implemen-tation[M]. Norwood, MA: Artech House, 2005: 3–15.
    [2]
    Freeman A, Johnson W T K, Huneycutt B, et al. The " Myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320–324. DOI: 10.1109/36.823926
    [3]
    Suess M, Grafmueller B, Zahn R, et al.. A novel high resolution, wide swath SAR system[C]. Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, 2001, 3: 1013–1015. DOI: 10.1109/IGARSS.2001.976731.
    [4]
    Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution and wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. DOI: 10.1109/TAES.2009.5089542
    [5]
    Huber S, Villano M, Younis M, et al.. Tandem-L: Design concepts for a next-generation spaceborne SAR system[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 1237–1241.
    [6]
    Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. DOI: 10.1109/TGRS.2007.905974
    [7]
    Wang Wen-qin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. DOI: 10.1109/TGRS.2011.2116030
    [8]
    Wang Wen-qin. MIMO SAR imaging: Potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(8): 18–23. DOI: 10.1109/MAES.2013.6575407
    [9]
    Krieger G, Rommel T, and Moreira A. MIMO-SAR tomography[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 91–96.
    [10]
    Ender J and Klare J. System architectures and algorithms for radar imaging by MIMO-SAR[C]. Proceedings of 2009 IEEE Radar Conference, Pasadena, 2009: 1–6. DOI: 10.1109/RADAR.2009.4976997.
    [11]
    Kim J H, Younis M, Moreira A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. DOI: 10.1109/TGRS.2014.2360148
    [12]
    Krieger G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. DOI: 10.1109/TGRS.2013.2263934
    [13]
    Kim J H, Younis M, Moreira A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. DOI: 10.1109/LGRS.2012.2213577
    [14]
    Wang Jie, Chen Long-yong, Liang Xing-dong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218–5228. DOI: 10.1109/TGRS.2015.2419271
    [15]
    Wang Jie, Liang Xing-dong, Chen Long-yong, et al. A novel space-time coding scheme used for MIMO-SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556–1560. DOI: 10.1109/TGRS.2011.2116030
    [16]
    He Feng, Dong Zhen, and Liang Dian-nong. A novel space-time coding alamouti waveform scheme for MIMO-SAR implementation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 229–233. DOI: 10.1109/LGRS.2015.2412961
    [17]
    Van Trees H L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley & Sons, 2002.
    [18]
    Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. DOI: 10.1109/LGRS.2004.832700
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3110) PDF downloads(444) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint