Volume 5 Issue 1
Feb.  2016
Turn off MathJax
Article Contents
Zhu Jiang, Deng Jiaxin, Liao Guisheng, Zhu Shengqi. Space Group Debris Imaging Based on Sparse Sample[J]. Journal of Radars, 2016, 5(1): 82-89. doi: 10.12000/JR16012
Citation: Zhu Jiang, Deng Jiaxin, Liao Guisheng, Zhu Shengqi. Space Group Debris Imaging Based on Sparse Sample[J]. Journal of Radars, 2016, 5(1): 82-89. doi: 10.12000/JR16012

Space Group Debris Imaging Based on Sparse Sample

DOI: 10.12000/JR16012
Funds:

The National Natural Science Foundation of China (61231017), National Basic Research Program of China (91438106), Shaanxi Youth Science and Technology New Star (2014KJXX-48), Natural Fund of Shaanxi Province (2015JQ6206)

  • Received Date: 2016-01-15
  • Rev Recd Date: 2016-01-28
  • Publish Date: 2016-02-28
  • Space group debris imaging is difficult with sparse data in low Pulse Repetition Frequency (PRF) spaceborne radar. To solve this problem in the narrow band system, we propose a method for space group debris imaging based on sparse samples. Due to the diversity of mass, density, and other factors, space group debris typically rotates at a high speed in different ways. We can obtain angular velocity through the autocorrelation function based on the diversity in the angular velocity. The scattering field usually presents strong sparsity, so we can utilize the corresponding measurement matrix to extract the data of different debris and then combine it using the sparse method to reconstruct the image. Furthermore, we can solve the Doppler ambiguity with the measurement matrix in low PRF systems and suppress some energy of other debris. Theoretical analysis confirms the validity of this methodology. Our simulation results demonstrate that the proposed method can achieve high-resolution Inverse Synthetic Aperture Radar (ISAR) images of space group debris in low PRF systems.

     

  • loading
  • [1]
    Abdel-Aziz Y A. An analytical theory for avoidance collision between space debris and operating satellites in LEO[J]. Applied Mathematical Modeling, 2013, 37(18/19): 8283-8291.
    [2]
    Xing Meng-dao and Bao Zheng. High resolution ISAR imaging of high speed moving targets[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(2): 58-67.
    [3]
    李道京, 刘波, 尹建凤, 等. 天基毫米波空间碎片观测雷达系统分析与设计[J]. 宇航学报, 2010, 31(12): 2746-2753. Li Dao-jing, Liu Bo, Yin Jian-feng, et al.. Analysis and design of spaceborne MMW radar for space debris observation system[J]. Journal of Astronautics, 2010, 31(12): 2746-2753.
    [4]
    王洋, 陈建文, 刘中, 等, 多运动目标ISAR成像方法研究[J]. 宇航学报, 2005, 26(4): 450-454. Wang Yang, Chen Jian-wen, Liu Zhong, et al.. Research on ISAR imaging of multiple moving targets[J]. Journal of Astronautics, 2005, 26(4): 450-454.
    [5]
    Xiao Da, Su Fu-lin, and Wu Jia-wei. A method of ISAR imaging for multiple targets[C]. 2012 IEEE 11th International Conference on Signal Processing (ICSP), 2012, 3: 2011-2015.
    [6]
    Sato T. Shape estimation of space debris using single-range Doppler interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 1000-1005.
    [7]
    Zhang Lei, Li Ya-chao, Liu Yan, et al.. Time-frequency characteristics based motion estimation and imaging for high speed spinning targets via narrowband waveforms[J]. SCIENCE CHINA Information Sciences, 2010, 53(8): 1628-1640.
    [8]
    Wang Qi, Xing Meng-dao, Lu Guang-yue, et al.. SRMF-CLEAN imaging algorithm for space debris[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3524-3533.
    [9]
    Wang Qi, Xing Meng-dao, Lu Guang-yue, et al.. Single range matching filtering for space debris radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 576-580.
    [10]
    Zhu Jiang, Zhu Sheng-qi, and Liao Gui-sheng. High-resolution radar imaging of space debris based on sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(10): 2090-2094.
    [11]
    Cands E J and Wakin M B. An Introduction To Compressive Sampling[J]. Signal Processing Magazine, 2008, 25(2): 21-30.
    [12]
    Mohimani G H, Babaie-Zadeh M, and Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
    [13]
    Zhu Dai-yin, Wang Ling, Yu Yu-sheng, et al.. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204-208.
    [14]
    Ye W, Yeo T S, and Bao Zheng. Weighted least-squares estimation of phase errors for SAR/ISAR autofocus[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2487-2494.
    [15]
    Gerry M J, Potter L C, Gupta I J, et al.. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179-1188.
    [16]
    Varshney K R, etin M, Fisher J W, et al.. Sparse representation in structured dictionaries with application to synthetic aperture radar[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3548-3561.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3091) PDF downloads(1104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint