WANG Fulai, PANG Chen, YIN Jiapeng, et al. Joint design of Doppler-tolerant complementary sequences and receiving filters against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 278–288. doi: 10.12000/JR22020
Citation:
Huang Yong, Chen Xiao-long, Guan Jian. Property Analysis and Suppression Method of Real Measured Sea Spikes[J]. Journal of Radars, 2015, 4(3): 334-342. doi: 10.12000/JR14108
WANG Fulai, PANG Chen, YIN Jiapeng, et al. Joint design of Doppler-tolerant complementary sequences and receiving filters against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 278–288. doi: 10.12000/JR22020
Citation:
Huang Yong, Chen Xiao-long, Guan Jian. Property Analysis and Suppression Method of Real Measured Sea Spikes[J]. Journal of Radars, 2015, 4(3): 334-342. doi: 10.12000/JR14108
In case of high-resolution, low grazing angle, high sea state, and horizontal transmitting, horizontal receiving polarization, the radar returns are strengthened, resulting in sea spikes. The sea spikes have the characteristics of high amplitudes, nonstationary, and non-Gaussian, which have a strong impact on the radar detection of weak marine moving targets. This study proposes a method for sea clutter suppression. Firstly, based on the sea spikes identification and selection method, the amplitude, temporal correlation, Doppler spectrum, and fractional power spectrum properties of sea spikes are analyzed. Secondly, the data to be detected are chosen by selecting the background clutter with minimum mean power, which can also eliminate the sea spikes. Correspondingly, sea clutter is suppressed with improved Signal-to-Clutter Ratio (SCR). Finally, the results of experiment with real radar data verify the effectiveness of the proposed method.
{{\boldsymbol{x}}^{\left( i \right)}} = {\text{argmin }}\varGamma \left( {{\boldsymbol{x}},{{\boldsymbol{h}}^{\left( i \right)}}} \right)\quad
(17)
其中,{{\boldsymbol{h}}^{\left( i \right)}}和{{\boldsymbol{x}}^{\left( i \right)}}分别表示第 i 次迭代时目标函数的最优解。为了简化分析,对目标函数\varGamma \left( {{\boldsymbol{x}},{\boldsymbol{h}}} \right)进行等价转换,首先利用离散求和来近似积分运算,将关注的多普勒频移区间\left[ {{f_1},{f_2}} \right]等间隔离散化为L个单元,则有
Zuo L, Li M, Zhang X W, et al.. An efficient method for detecting slow-moving weak targets in sea clutter based on time-frequency iteration decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3659-3672.
[2]
Chen X L, Guan J, Liu N B, et al.. Detection of a low observable sea-surface target with micromotion via the Radon-linear canonical transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1225-1229.
[3]
Ward K D and Watts S. Use of sea clutter models in radar design and development[J]. IET Radar, Sonar Navigation, 2010, 4(2): 146-157.
[4]
闫亮, 孙培林, 易磊, 等. 基于逆高斯分布的复合高斯海杂波建模研究[J]. 雷达学报, 2013, 2(4): 461-465. Yan L, Sun P L, Yi L, et al.. Modeling of compound-Gaussian sea clutter based on an inverse Gaussian distribution[J]. Journal of Radars, 2013, 2(4): 461-465.
[5]
Zhang M, Chen H, and Yin H C. Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles: theoretical model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 1967-1975.
[6]
Greco M, Stinco P, and Gini F. Identification and analysis of sea radar clutter spikes[J]. IET Radar, Sonar Navigation, 2010, 4(2): 239-250.
[7]
陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1): 123-134. Chen X L, Guan J, and He Y. Applications and prospect of micro-motion theory in the detection of sea surface target[J]. Journal of Radars, 2013, 2(1): 123-134.
[8]
Gutnik V G, Kulemin G P, and Sharapov L I. Spike statistics features of the radar sea clutter in the millimeter wave band at extremely small grazing angles[C]. The Fourth International Kharkov Symposium on Physics and Engineering of Millimeter and Sub-Millimeter Waves, Kharkov, Ukraine, 2001: 426-428.
[9]
Posner F L. Spiky sea clutter at high range resolutions and very low grazing angles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 58-73.
[10]
梅孝安. IPIX雷达海尖峰统计特性研究[J]. 飞行器测控学报, 2007, 26(2): 19-23. Mei X A. A study on the statistical characteristics of IPIX radar sea spikes[J]. Journal of Spacecraft TT C Technology, 2007, 26(2): 19-23.
[11]
谢常清, 杨俊岭. 雷达海杂波尖峰时频分布特性研究[J]. 现代雷达, 2008, 30(5): 10-13. Xie C Q and Yang J L. A study on the time-frequency distribution of radar sea clutter spike[J]. Modern Radar, 2008, 30(5): 10-13.
[12]
Rosenberg L. Sea-spike detection in high grazing angle X-band sea-clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4556-4562.
[13]
Tao R, Zhang F, and Wang Y. Fractional power spectrum[J]. IEEE Transactions on Signal Processing, 2008, 56(9): 4199-4206.
[14]
Drosopoulos A. Description of the OHGR database[R]. Ottawa: DREO Technical Note, 1994.
[15]
Dong Y and Merrett D. Analysis of L-band multi-channel sea clutter[J]. IET Radar, Sonar Navigation, 2010, 4(2): 223-238.
[16]
Walker D. Doppler modelling of radar sea clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(2): 73-80.
[17]
Chen X L, Guan J, Huang Y, et al.. Maneuvering target detection via Radon-fractional Fourier transform-based long- time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939-953.
[18]
Chen X L, Guan J, Huang Y, et al.. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225-2240.
[19]
Guida M, Longo M, and Lops M. Biparametric CFAR procedures for lognormal clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3): 798-809.
WANG Fulai, PANG Chen, YIN Jiapeng, et al. Joint design of Doppler-tolerant complementary sequences and receiving filters against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 278–288. doi: 10.12000/JR22020
WANG Fulai, PANG Chen, YIN Jiapeng, et al. Joint design of Doppler-tolerant complementary sequences and receiving filters against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 278–288. doi: 10.12000/JR22020