当目标沿雷达视线(Light Of Sight, LOS)方向运动时,其回波信号的载频将发生偏移,即产生多普勒现象。除目标整体运动外,若目标或目标上的某些结构还存在独立的振动或旋转,则称其为微动。微动会在目标主体运动对应的主多普勒谱周围产生边带,即产生微多普勒效应[1]。直升机、飞机旋转叶片、小型卫星和空间碎片等航空航天目标的典型微动包括自旋、进动和章动[2]等。
对于空间微动目标,其高分辨雷达回波[3,4]蕴含着散射中心2维或3维分布等结构信息,同时包含着自旋频率、进动频率及进动角等运动信息,上述信息为准确的目标分类、识别提供了重要支撑。目前,典型空间微动目标的高分辨雷达成像与微动参数估计方法研究[5–9]已受到雷达成像与雷达自动目标识别领域的广泛关注。
空间微动目标的高分辨成像方法包括参数化方法[10–14]与非参数化[15–21]方法两类。其中,参数化成像方法首先建立各种微动形式的参数化模型,进而采用基于模型的参数估计方法实现高分辨成像。主要包括基于固定散射中心模型的成像方法[10,22–24]及基于滑动散射中心模型[11,13]的进动目标成像方法。对于章动等复杂微动形式,需要建立非常复杂的参数化模型,并实现大量未知参数的准确求解,由于目标的散射中心坐标与微动参数耦合,因此求解运算量很大。非参数化成像方法则主要包括自适应时频分析[25]与散射中心航迹关联[16,17,26–28]成像两类。与参数化成像方法相比,非参数化成像方法具有各种微动形式具有鲁棒性,能够避免由于模型失配而引起的较大误差,计算效率较高。
对于非参数化方法,基于航迹矩阵分解的成像方法[17]可实现自旋、进动、章动等微动目标的高分辨成像。该类方法的关键步骤之一是在距离-慢时间域实现散射中心航迹的精确估计和关联。现有方法采用卡尔曼滤波器和最小欧氏距离准则,实现基于1维斜距信息的航迹关联[17,29],当散射中心回波包络交叉点较多、相距较近时容易产生较大的关联误差。此外,获取高质量的高分辨距离像(High Resolution Range Profile, HRRP)也是非参数化成像的关键步骤。
为了解决上述问题,本文提出一种基于距离-瞬时多普勒(Range-Instantaneous Doppler, RID)像序列的微动目标高分辨3维成像新方法。该方法充分利用散射中心在距离-瞬时多普勒域2维分布比距离-慢时间域1维分布可分性更强等特性,提出基于RID像序列的散射中心航迹关联方法,提高了航迹交叉点散射中心的可分性。进而通过带约束条件的矩阵分解求得散射中心3维分布和等效雷达视线矩阵,实现空间微动目标高分辨3维成像。最后,仿真数据证明了算法的有效性。
本文结构如下:第2节介绍了RID序列的生成方法;第3节研究了基于RID序列的航迹矩阵关联方法,以及基于现代谱估计的航迹矩阵精估计方法;第4节研究了基于航迹矩阵分解的微动目标高分辨3维成像方法;第5节以锥体章动目标为例,给出目标航迹关联及3维成像结果;最后一节进行了总结。
2 距离-瞬时多普勒序列对于信号
![]() |
其中,
为实现散射中心航迹的准确关联,需要获得其距离-瞬时多普勒像序列。假设雷达发射大时宽-带宽积脉冲信号,距离脉压后回波共包含
![]() |
图 1 RID像生成过程示意图 Fig.1 The process of RID image series generation |
为了利用RID像序列实现散射中心航迹关联,需要提取每幅图像中散射中心的2维坐标。分水岭(watershed)算法[31]能够精确定位图像中的微弱边缘,并获得封闭且连续的分割曲线,因此适用于提取RID像中的散射中心支撑域。此外,相比于基于统计学的图像分割算法,该算法计算量小且分割较为准确,适用于图像数据的实时处理。因此,本文首先使用采用分水岭方法对RID像进行图像分割以获得每个散射中心对应的支撑域,然后计算每个支撑域对应的散射中心质心,并将此质心作为散射中心2维坐标的粗估计。基于watershed方法的RID像分割过程实现方法如下:
Step1:将原始图像归一化后,通过设定门限值将其转化为二值图像;
Step2:计算二值图像中每个像素点到其最近非零点的距离(如果像素本身非零,则其本身为最近的非零点,因此距离为0),用于替代该像素点的像素值,得到矩阵
Step3:令
Step4:采用分水岭方法对Step3中得到的梯度图像进行分割[31]。
散射中心分割完成后,提取分割后每个散射中心的支撑域。具体步骤为:首先将分割后图像的1值和0值点赋为0,并将其他点赋为255;然后求二值图像的连通域;最后取其边界得到微动目标每个散射中心的支撑域。最后,将每个散射中心对应支持区的质心作为RID图像中每个散射中心2维坐标的估计。其中,质心计算方法如下:
![]() |
其中,
将每一时刻的RID像都做上述处理,则可获得散射中心在各个时刻对应的坐标。
3.2 航迹矩阵关联由于微动目标具有惯性,因此认为相邻两幅距离-瞬时多普勒图像中同一散射中心的坐标连续变化,从而基于最近邻法实现航迹关联。设第
![]() |
依次计算RID序列中相邻两幅图像中各散射中心的关联点,从而实现RID图像中各散射中心的关联,并得到微动目标航迹矩阵
Step1:初始化航迹矩阵
Step2:将
Step3:令
Step4:令
Step5:令
由于RID像的距离分辨率为
微动目标经运动补偿后的回波信号可表示为:
![]() |
其中,
![]() |
其中,
为了采用Root-MUSIC方法,首先构造距离回波的协方差矩阵:
![]() |
其中,
![]() |
通过Z变换找到与单位元距离最近的P个根可以求得角频率
根据运动的相对性,对于微动目标上的固定散射中心,其在距离-慢时间域的航迹矩阵可以表示为:
![]() |
其中,
利用矩阵奇异值分解法,航迹矩阵可以分解为
![]() |
其中,近似后得到
根据
![]() |
其中,
对于任意的正交矩阵
![]() |
其中,
![]() |
其中,
通过上述航迹矩阵分解方法可以获得微动目标3维散射中心分布,进而实现空间微动目标高分辨3维成像。整体算法流程图如图2所示。
![]() |
图 2 基于航迹矩阵分解的微动目标高分辨成像算法流程图 Fig.2 The flow chart for high-resolution imaging of micro-motion targets based on trajectory matrix decomposition |
本节采用仿真数据对所提算法进行验证。微动目标散射中心分布如图3(a)所示,该目标由9个散射中心组成。仿真参数为:带宽2 GHz,载频10 GHz,脉冲重复频率PRF=2000 Hz,观测时间为1 s。章动目标自旋角频率为1 Hz,锥旋角频率为0.4 Hz,摆动角频率为0.1 Hz,摆动幅度为5°。回波信号的信噪比为20 dB。
![]() |
图 3 基于RID像序列的章动目标航迹矩阵关联结果 Fig.3 Trajectory association of nutation targets based on RID image series |
距离脉压后的目标回波如图3(b)所示,其中最底部曲线对应锥顶散射中心。9个散射中心航迹交叉点较多,基于1维距离像关联难度较大。采用watershed方法从图3(c)所示RID像中提取散射中心支撑域的结果如图3(d)所示,进而从中计算出各散射中心坐标,如图3(e)所示,其中蓝色圆圈表示散射中心支撑域轮廓,红色标记表示通过计算得到的散射中心坐标。由图可知,散射中心轮廓清晰,分割效果良好。基于RID像序列的距离-多普勒-慢时间3维关联结果如图3(f)所示,在距离-时间维的关联结果如图3(g)所示,其中不同颜色代表不同散射中心的航迹。由该图可知,该方法能够有效避免交叉点处关联错误等问题,获得准确的散射中心航迹关联结果。
利用Root-MUSIC的谱估计方法对航迹矩阵进行精估计,结果如图3(h)所示。最后,采用航迹矩阵分解法获得微动目标3维散射中心分布的结果如图4(a)所示,其中红色星号表示估计值,蓝色圆圈表示真实值。可以看出,成像结果与真实散射中心分布一致,从而证明了本文所提算法的有效性。等效雷达视线矩阵估计结果如图4(b)所示。
![]() |
图 4 章动目标3维成像结果 Fig.4 3D image of the nutation target |
为测试所提成像方法的抗噪性能,在保持其他参数不变的条件下,给目标回波中分别加入信噪比为0 dB, 5 dB, 10 dB, 15 dB, 20 dB的高斯白噪声。在每个信噪比下做50次蒙特卡洛实验,并按照式(13)计算均方根误差(Root Mean Square Error, RMSE):
![]() |
其中,
![]() |
图 5 均方根误差随信噪比的变化曲线 Fig.5 Variation of the RMSE with SNR |
针对传统参数化成像方法对复杂微动目标建模困难,未知参数求解运算量大等问题,本文提出一种基于RID图像序列的微动目标非参数化高分辨3维成像方法。该方法首先基于watershed法对RID图像进行分割提取散射中心,进而基于最近邻准则对散射中心航迹进行关联,接着通过Root-MUSIC方法实现航迹矩阵的精估计。最终,通过航迹矩阵分解实现微动目标的高分辨3维成像。该方法有效避免了参数化成像方法未知参数求解困难,易产生模型失配等不足。同时,2维关联方法克服了散射中心航迹交叉严重时,传统1维关联方法引起的关联误差,实现了复杂微动目标的高分辨3维成像。
在未来工作中,将研究低信噪比环境下的散射中心关联方法及非参数化微动目标高分辨3维成像方法,并进一步研究基于高分辨图像及等效雷达视线矩阵的微动目标特征提取及识别方法。
[1] |
Chen V C, Li F Y, Ho S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J].
IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21. DOI:10.1109/TAES.2006.1603402 (![]() |
[2] |
Chen V C. The Micro-Doppler Effect in Radar[M]. Boston: Artech House, 2011.
(![]() |
[3] |
Brown W M and Fredricks R J. Range-Doppler imaging with motion through resolution cells[J].
IEEE Transactions on Aerospace and Electronic Systems, 1969, AES-5(1): 98-102. DOI:10.1109/TAES.1969.309826 (![]() |
[4] |
Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995.
(![]() |
[5] |
张翼, 朱玉鹏, 黎湘. 基于微多普勒特征的目标微动参数估计[J].
信号处理, 2009, 25(7): 1120-1124. Zhang Yi, Zhu Yu-peng, and Li Xiang. Micro-motion parameter estimation of ballistic missile target based on micro-Doppler feature[J]. Signal Processing, 2009, 25(7): 1120-1124. DOI:10.3969/j.issn.1003-0530.2009.07.022 ( ![]() |
[6] |
Wang T, Wang X S, Chang Y L, et al. Estimation of precession parameters and generation of ISAR images of ballistic missile targets[J].
IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1983-1995. DOI:10.1109/TAES.2010.5595608 (![]() |
[7] |
Luo Y, Zhang Q, Qiu C W, et al. Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals[J].
IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2087-2098. DOI:10.1109/TGRS.2009.2034367 (![]() |
[8] |
邹小海, 艾小锋, 李永祯, 等. 基于微多普勒的圆锥弹头进动与结构参数估计[J].
电子与信息学报, 2011, 33(10): 2413-2419. Zou Xiao-hai, Ai Xiao-feng, Li Yong-zhen, et al. Precession and structural parameter estimation of the cone-shaped warhead based on the micro-Doppler[J]. Journal of Electronics & Information Technology, 2011, 33(10): 2413-2419. DOI:10.3724/SP.J.1146.2011.00120 ( ![]() |
[9] |
Luo Y, Zhang Q, Yuan N, et al. Three-dimensional precession feature extraction of space targets[J].
IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1313-1329. DOI:10.1109/TAES.2014.110545 (![]() |
[10] |
Zhang Q, Yeo T S, Tan H S, et al. Imaging of a moving target with rotating parts based on the Hough transform[J].
IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 291-299. DOI:10.1109/TGRS.2007.907105 (![]() |
[11] |
Gao H W, Xie L G, Wen S L, et al. Micro-Doppler signature extraction from ballistic target with micro-motions[J].
IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1969-1982. DOI:10.1109/TAES.2010.5595607 (![]() |
[12] |
Bai X R and Bao Z. High-resolution 3D imaging of precession cone-shaped targets[J].
IEEE Transactions on Antennas and Propagation, 2014, 62(8): 4209-4219. DOI:10.1109/TAP.2014.2329004 (![]() |
[13] |
Bai X R and Bao Z. Imaging of rotation-symmetric space targets based on electromagnetic modeling[J].
IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1680-1689. DOI:10.1109/TAES.2014.120772 (![]() |
[14] |
Bai X R and Bao Z. High-resolution radar imaging of aerospace targets with micromotion[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 2014: 934–937. DOI: 10.1109/IGARSS.2014.6946579.
(![]() |
[15] |
Chen V C and Ling H. Time-Frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston, MA, USA: Artech House, 2002.
(![]() |
[16] |
Tomasi C and Kanade T. Shape and motion from image streams under orthography: A factorization method[J].
International Journal of Computer Vision, 1992, 9(2): 137-154. DOI:10.1007/BF00129684 (![]() |
[17] |
Bai X R, Zhou F, and Bao Z. High-resolution radar imaging of space targets based on HRRP series[J].
IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2369-2381. DOI:10.1109/TGRS.2013.2260342 (![]() |
[18] |
Chen V C and Qian S. Joint time-frequency transform for radar range-Doppler imaging[J].
IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 486-499. DOI:10.1109/7.670330 (![]() |
[19] |
Chen V C. Adaptive time-frequency ISAR processing[C]. Proceedings Volume 2845, Radar Processing, Technology, and Applications, Denver, CO, United States, 1996. DOI: 10.1117/12.257216.
(![]() |
[20] |
Chen V C. Radar detection of multiple moving targets in clutter using time-frequency radon transform[C]. Proceedings Volume 4728, Signal and Data Processing of Small Targets 2002, Orlando, FL, United States, 2002. DOI: 10.1117/12.478534.
(![]() |
[21] |
Bai X R, Zhou F, and Bao Z. High-resolution three-dimensional imaging of space targets in micromotion[J].
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3428-3440. DOI:10.1109/JSTARS.2015.2431119 (![]() |
[22] |
Wang Q, Xing M D, Lu G Y, et al. SRMF-CLEAN imaging algorithm for space debris[J].
IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3524-3533. DOI:10.1109/TAP.2007.910343 (![]() |
[23] |
Wang Q, Xing M D, Lu G Y, et al. High-resolution three-dimensional radar imaging for rapidly spinning targets[J].
IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 22-30. DOI:10.1109/TGRS.2007.909086 (![]() |
[24] |
Bai X R, Xing M D, Zhou F, et al. High-resolution three-dimensional imaging of spinning space debris[J].
IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 2352-2362. DOI:10.1109/TGRS.2008.2010854 (![]() |
[25] |
Chen V C. Reconstruction of inverse synthetic aperture radar image using adaptive time-frequency wavelet transform[C]. Proceedings Volume 2491, Wavelet Applications II, Orlando, FL, United States, 1995, DOI: 10.1117/12.205404.
(![]() |
[26] |
Ferrara M, Arnold G, and Stuff M. Shape and motion reconstruction from 3D-to-1D orthographically projected data via object-image relations[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(10): 1906-1912. DOI:10.1109/TPAMI.2008.294 (![]() |
[27] |
Mayhan J T, Burrows M L, Cuomo K M, et al. High resolution 3D " Snapshot” ISAR imaging and feature extraction[J].
IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630-642. DOI:10.1109/7.937474 (![]() |
[28] |
Burrows M L. Two-dimensional ESPRIT with tracking for radar imaging and feature extraction[J].
IEEE Transactions on Antennas and Propagation, 2004, 52(2): 524-532. DOI:10.1109/TAP.2003.822411 (![]() |
[29] |
Grewal M S and Andrews A P. Kalman Filtering, Theory and Practice Using MATLAB[M]. New York, USA: Wiley, 2001.
(![]() |
[30] |
Allen J. Short term spectral analysis, synthesis, and modification by discrete Fourier transform[J].
IEEE Transactions on Acoustics, Speech, and Signal Processing, 1977, 25(3): 235-238. DOI:10.1109/TASSP.1977.1162950 (![]() |
[31] |
Vincent L and Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598. DOI:10.1109/34.87344 (![]() |
[32] |
Stoica P and Moses R L. Spectral Analysis of Signals[M]. Upper Saddle River, NJ: Prentice Hall, 2005.
(![]() |
[33] |
Liu H C, Jiu B, Liu H W, et al. Superresolution ISAR imaging based on sparse Bayesian learning[J].
IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013. DOI:10.1109/TGRS.2013.2286402 (![]() |
[34] |
Li H T, Wang C Y, Wang K, et al. High resolution range profile of compressive sensing radar with low computational complexity[J].
IET Radar, Sonar & Navigation, 2015, 9(8): 984-990. DOI:10.1049/iet-rsn.2014.0454 (![]() |