Volume 12 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
LI Wanlu, XIANG Zheng, and REN Peng. Filter bank multi-carrier waveform design for low probability of intercepting joint radar and communication system[J]. Journal of Radars, 2023, 12(2): 287–296. doi: 10.12000/JR22064
Citation: LI Wanlu, XIANG Zheng, and REN Peng. Filter bank multi-carrier waveform design for low probability of intercepting joint radar and communication system[J]. Journal of Radars, 2023, 12(2): 287–296. doi: 10.12000/JR22064

Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System

doi: 10.12000/JR22064
Funds:  The National Natural Science Foundation of China (61971320)
More Information
  • Corresponding author: REN Peng, rp1816@126.com
  • Received Date: 2022-04-02
  • Accepted Date: 2022-06-13
  • Rev Recd Date: 2022-06-12
  • Available Online: 2022-06-17
  • Publish Date: 2022-07-06
  • Cyclic prefixes in joint radar and communication systems based on Orthogonal Frequency Division Multiplexing (OFDM) and low probability of interception lead to weak radar echo masking on the battlefield. To address this problem, a low probability of interception waveform design scheme based on Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (FBMC-OQAM) is proposed in this paper. Mathematical models for the FBMC joint radar and communication waveform, target detection probability, and communication channel capacity are established. Under the radar and communication performance constraints required by the system, a joint optimization problem of minimizing the total transmitted power of the system is designed, and the subcarrier and power allocation scheme are optimized. Furthermore, the proposed algorithm can realize adaptive transmission where the parameters of the transmitting waveform can be optimally designed for the next pulse by utilizing the measured values of the current signal and the channel state information. Moreover, the feasibility and advantages of FBMC as the radar signal are analyzed based on the average ambiguity function. Theoretical analysis and simulation experiments show that the power allocation scheme proposed in this paper can effectively reduce the total transmitted power of the system, to achieve low interception performance compared with the equal power allocation. The FBMC waveform can effectively reduce the sidelobes caused by cyclic prefixes, which improves the radar resolution and information rate.

     

  • loading
  • [1]
    CALDWELL D, FREDA J, and GOLDSTEIN L J. China maritime report No. 5: China’s dreadnought? The PLA Navy’s type 055 cruiser and its implications for the future maritime security environment[R]. CMSI China Maritime Reports. 5, 2020.
    [2]
    MCCASLIN I B and ERICKSON A S. The Impact of Xi-Era Reforms on the Chinese Navy[M]. SAUNDERS P C, DING A S, SCOBELL A, et al. Chairman Xi Remakes the PLA: Assessing Chinese Military Reforms. Washington: National Defense University Press, 2018.
    [3]
    MCMAHON B, LAPIERRE R, MACCABE A, et al. ORCHESTRA: Optimizable RF converged hardware expression of a scalable transmit/receive architecture[C]. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018: 2139–2140.
    [4]
    MENZEL W. Millimeter-wave radar for civil applications[C]. The 7th European Radar Conference, Paris, France, 2010: 89–92.
    [5]
    ERDELJ M, NATALIZIO E, CHOWDHURY K R, et al. Help from the sky: Leveraging UAVs for disaster management[J]. IEEE Pervasive Computing, 2017, 16(1): 24–32. doi: 10.1109/MPRV.2017.11
    [6]
    YANG Chouchang and SHAO Huairong. WiFi-based indoor positioning[J]. IEEE Communications Magazine, 2015, 53(3): 150–157. doi: 10.1109/MCOM.2015.7060497
    [7]
    MISHRA K V, SHANKAR M R B, KOIVUNEN V, et al. Toward millimeter-wave joint radar communications: A signal processing perspective[J]. IEEE Signal Processing Magazine, 2019, 36(5): 100–114. doi: 10.1109/MSP.2019.2913173
    [8]
    马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146

    MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint Radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radar, 2022, 11(2): 198–212. doi: 10.12000/JR21146
    [9]
    刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: overview and prospect[J]. Journal of Radar, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [10]
    ZHANG Qiuyue, ZHOU Yu, ZHANG Linrang, et al. Circulating code array for a dual-function radar-communications system[J]. IEEE Sensors Journal, 2020, 20(2): 786–798. doi: 10.1109/JSEN.2019.2944470
    [11]
    BEKAR M, BAKER C J, HOARE E G, et al. Joint MIMO Radar and communication system using a PSK-LFM waveform With TDM and CDM approaches[J]. IEEE Sensors Journal, 2021, 21(5): 6115–6124. doi: 10.1109/JSEN.2020.3043085
    [12]
    杨慧婷, 周宇, 谷亚彬, 等. 参数调制多载波雷达通信共享信号设计[J]. 雷达学报, 2019, 8(1): 54–63. doi: 10.12000/JR18001

    YANG Huiting, ZHOU Yu, GU Yabin, et al. Design of integrated Radar and communication signal based on multicarrier parameter modulation signal[J]. Journal of Radar, 2019, 8(1): 54–63. doi: 10.12000/JR18001
    [13]
    LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(6): 276–284. doi: 10.1049/ip-rsn:20000734
    [14]
    MOZESON E and LEVANON N. Multicarrier radar signals with low peak-to-mean envelope power ratio[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(2): 71–77. doi: 10.1049/ip-rsn:20030263
    [15]
    STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110
    [16]
    LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
    [17]
    FARHANG-BOROUJENY B. OFDM versus filter bank multicarrier[J]. IEEE Signal Processing Magazine, 2011, 28(3): 92–112. doi: 10.1109/MSP.2011.940267
    [18]
    PACE P E. Detecting and Classifying Low Probability of Intercept Radar[M]. 2nd ed. Norwood: Artech House, 2009: 231–245.
    [19]
    SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Low probability of intercept-based optimal power allocation scheme for an integrated multistatic radar and communication system[J]. IEEE Systems Journal, 2020, 14(1): 983–994. doi: 10.1109/JSYST.2019.2931754
    [20]
    SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Low probability of intercept based multicarrier radar jamming power allocation for joint radar and wireless communications systems[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 802–811. doi: 10.1049/iet-rsn.2016.0362
    [21]
    JAMAL H and MATOLAK D W. Dual-polarization FBMC for improved performance in wireless communication systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 349–358. doi: 10.1109/TVT.2018.2879573
    [22]
    MADHOW U. Fundamentals of Digital Communication[M]. Cambridge: Cambridge University Press, 2008: 213–243.
    [23]
    KNOTT E F, SHAEFFER J F, and TULEY M T. Radar Cross Section[M]. 2nd ed. SciTech Publishing, 2004: 23–45.
    [24]
    SEN S, TANG Gongguo, and NEHORAI A. Multiobjective optimization of OFDM radar waveform for target detection[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 639–652. doi: 10.1109/TSP.2010.2089628
    [25]
    KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Englewood Cliffs: Prentice-Hall, 1993: 125–132.
    [26]
    LEVANON N and MOZESON E. Radar Signals[M]. New York: John Wiley & Sons, 2004: 211–232.
    [27]
    AUSLANDER L and TOLIMIERI R. Characterizing the radar ambiguity functions[J]. IEEE Transactions on Information Theory, 1984, 30(6): 832–836. doi: 10.1109/TIT.1984.1056980
    [28]
    SKOLNIK M I. Introduction to Radar Systems[M]. New York: McGraw-Hill, 1980.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(875) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint