Volume 11 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
XU Changgui, ZHANG Bo, GAO Jianwei, et al. FCOSR: An anchor-free method for arbitrary-oriented ship detection in SAR images[J]. Journal of Radars, 2022, 11(3): 335–346. doi: 10.12000/JR21204
Citation: XU Changgui, ZHANG Bo, GAO Jianwei, et al. FCOSR: An anchor-free method for arbitrary-oriented ship detection in SAR images[J]. Journal of Radars, 2022, 11(3): 335–346. doi: 10.12000/JR21204

FCOSR: An Anchor-free Method for Arbitrary-oriented Ship Detection in SAR Images

doi: 10.12000/JR21204
Funds:  The National Natural Science Foundation of China (41930110, 41901292)
More Information
  • Corresponding author: ZHANG Bo, zhangbo202140@aircas.ac.cn
  • Received Date: 2021-12-16
  • Accepted Date: 2022-02-25
  • Rev Recd Date: 2022-02-22
  • Available Online: 2022-03-05
  • Publish Date: 2022-03-24
  • The anchor-free network represented by a Fully Convolutional One-Stage object detector (FCOS) avoids the hyperparameter setting issue caused by the preset anchor boxes; however, the result of the horizontal bounding boxes cannot indicate the precise boundary and orientation of the arbitrary-oriented ship detection in synthetic-aperture radar images. To solve this problem, this paper proposes a detection algorithm named FCOSR. First, the angle parameter is added to the FCOS regression branch to output the rotatable bounding boxes. Second, 9-point features based on deformable convolution are introduced to predict the ship confidence and the boundary-box residual to reduce the land false alarm and improve the accuracy of the boundary box regression. Finally, in the training stage, the rotatable adaptive sample selection strategy is used to allocate appropriate positive sample points to the real ship to improve the network detection accuracy. Compared to the FCOS and currently published anchor-based rotatable detection networks, the proposed network exhibited faster detection speed and higher detection accuracy on the SSDD+ and HRSID datasets with the mAPs of 91.7% and 84.3%, respectively. The average detection time of image slices was only 33 ms.

     

  • loading
  • [1]
    郭倩, 王海鹏, 徐丰. SAR图像飞机目标检测识别进展[J]. 雷达学报, 2020, 9(3): 497–513. doi: 10.12000/JR20020

    GUO Qian, WANG Haipeng, and XU Feng. Research progress on aircraft detection and recognition in SAR imagery[J]. Journal of Radars, 2020, 9(3): 497–513. doi: 10.12000/JR20020
    [2]
    樊海玮, 史双, 蔺琪, 等. 复杂背景下SAR图像船舶目标检测算法研究[J]. 计算机技术与发展, 2021, 31(10): 49–55. doi: 10.3969/j.issn.1673-629X.2021.10.009

    FAN Haiwei, SHI Shuang, LIN Qi, et al. Research on ship target detection algorithm in complex background SAR image[J]. Computer Technology and Development, 2021, 31(10): 49–55. doi: 10.3969/j.issn.1673-629X.2021.10.009
    [3]
    李健伟, 曲长文, 彭书娟. 基于级联CNN的SAR图像舰船目标检测算法[J]. 控制与决策, 2019, 34(10): 2191–2197. doi: 10.13195/j.kzyjc.2018.0168

    LI Jianwei, QU Changwen, and PENG Shujuan. A ship detection method based on cascade CNN in SAR images[J]. Control and Decision, 2019, 34(10): 2191–2197. doi: 10.13195/j.kzyjc.2018.0168
    [4]
    CUI Zongyong, LI Qi, CAO Zongjie, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983–8997. doi: 10.1109/TGRS.2019.2923988
    [5]
    张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841–851. doi: 10.12000/JR19111

    ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, et al. High-speed and high-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841–851. doi: 10.12000/JR19111
    [6]
    陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3): 413–424. doi: 10.12000/JR19041

    CHEN Huiyuan, LIU Zeyu, GUO Weiwei, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3): 413–424. doi: 10.12000/JR19041
    [7]
    WANG Zhen, WANG Buhong, and XU Nan. SAR ship detection in complex background based on multi-feature fusion and non-local channel attention mechanism[J]. International Journal of Remote Sensing, 2021, 42(19): 7519–7550. doi: 10.1080/01431161.2021.1963003
    [8]
    WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery[J]. Remote Sensing, 2019, 11(5): 531. doi: 10.3390/rs11050531
    [9]
    ZHAO Yan, ZHAO Lingjun, XIONG Boli, et al. Attention receptive pyramid network for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2738–2756. doi: 10.1109/JSTARS.2020.2997081
    [10]
    ZHANG Tianwen, ZHANG Xiaoling, and KE Xiao. Quad-FPN: A novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771. doi: 10.3390/rs13142771
    [11]
    LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3): 642–656. doi: 10.1007/s11263-019-01204-1
    [12]
    ZHOU Xingyi, WANG Dequan, and KRÄHENBÜHL P. Objects as points[C]. arXiv preprint arXiv: 1904.07850, 2019.
    [13]
    TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9626–9635.
    [14]
    KONG Tao, SUN Fuchun, LIU Huaping, et al. FoveaBox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389–7398. doi: 10.1109/TIP.2020.3002345
    [15]
    CUI Zongyong, WANG Xiaoya, LIU Nengyuan, et al. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 379–391. doi: 10.1109/TGRS.2020.2997200
    [16]
    GUO Haoyuan, YANG Xi, WANG Nannan, et al. A CenterNet++ model for ship detection in SAR images[J]. Pattern Recognition, 2021, 112: 107787. doi: 10.1016/j.patcog.2020.107787
    [17]
    SUN Zhongzhen, DAI Muchen, LENG Xiangguang, et al. An anchor-free detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7799–7816. doi: 10.1109/JSTARS.2021.3099483
    [18]
    FU Jiamei, SUN Xian, WANG Zhirui, et al. An anchor-free method based on feature balancing and refinement network for multiscale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1331–1344. doi: 10.1109/TGRS.2020.3005151
    [19]
    MA Jianqi, SHAO Weiyuan, YE Hao, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111–3122. doi: 10.1109/TMM.2018.2818020
    [20]
    JIANG Yingying, ZHU Xiangyu, WANG Xiaobing, et al. R2CNN: Rotational region CNN for orientation robust scene text detection[C]. arXiv preprint arXiv: 1706.09579, 2017.
    [21]
    YANG Xue, YANG Jirui, YAN Junchi, et al. SCRDet: Towards more robust detection for small, cluttered and rotated objects[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 8231–8240.
    [22]
    YANG Xue, LIU Qingqing, YAN Junchi, et al. R3Det: Refined single-stage detector with feature refinement for rotating object[C]. arXiv preprint arXiv: 1908.05612, 2019.
    [23]
    HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 2785–2794.
    [24]
    WANG Jizhou, LU Changhua, and JIANG Weiwei. Simultaneous ship detection and orientation estimation in SAR images based on attention module and angle regression[J]. Sensors, 2018, 18(9): 2851. doi: 10.3390/s18092851
    [25]
    LIU Lei, CHEN Guowei, PAN Zongxu, et al. Inshore ship detection in SAR images based on deep neural networks[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 25–28.
    [26]
    AN Quanzhi, PAN Zongxu, LIU Lei, et al. DRBox-v2: An improved detector with rotatable boxes for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8333–8349. doi: 10.1109/TGRS.2019.2920534
    [27]
    CHEN Chen, HE Chuan, HU Changhua, et al. MSARN: A deep neural network based on an adaptive recalibration mechanism for multiscale and arbitrary-oriented SAR ship detection[J]. IEEE Access, 2019, 7: 159262–159283. doi: 10.1109/ACCESS.2019.2951030
    [28]
    PAN Zhenru, YANG Rong, and ZHANG Zhimin. MSR2N: Multi-stage rotational region based network for arbitrary-oriented ship detection in SAR images[J]. Sensors, 2020, 20(8): 2340. doi: 10.3390/s20082340
    [29]
    CHEN Shiqi, ZHANG Jun, and ZHAN Ronghui. R2FA-Det: Delving into high-quality rotatable boxes for ship detection in SAR images[J]. Remote Sensing, 2020, 12(12): 2031. doi: 10.3390/rs12122031
    [30]
    YANG Rong, WANG Gui, PAN Zhenru, et al. A novel false alarm suppression method for CNN-based SAR ship detector[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(8): 1401–1405. doi: 10.1109/LGRS.2020.2999506
    [31]
    DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 764–773.
    [32]
    ZHANG Shifeng, CHI Cheng, YAO Yongqiang, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 9756–9765.
    [33]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826
    [34]
    LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017: 1–6.
    [35]
    WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/ACCESS.2020.3005861
    [36]
    XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2189) PDF downloads(168) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint