Volume 11 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
AN Hongyang, SUN Zhichao, WANG Chaodong, et al. Unambiguous imaging method for GEO-LEO bistatic SAR based on joint sequential multiframe and multichannel receiving recovery[J]. Journal of Radars, 2022, 11(3): 376–385. doi: 10.12000/JR21133
Citation: AN Hongyang, SUN Zhichao, WANG Chaodong, et al. Unambiguous imaging method for GEO-LEO bistatic SAR based on joint sequential multiframe and multichannel receiving recovery[J]. Journal of Radars, 2022, 11(3): 376–385. doi: 10.12000/JR21133

Unambiguous Imaging Method for GEO-LEO Bistatic SAR Based on Joint Sequential Multiframe and Multichannel Receiving Recovery

doi: 10.12000/JR21133
Funds:  The National Natural Science Foundation of China (61922023, 61901088, 61771113, 61801099), The China Postdoctoral Science Foundation (2021M690557, 2019M65338), The Postdoctoral Innovation Talent Support Program (BX2021058)
More Information
  • Corresponding author: WU Junjie, junjie_wu@uestc.edu.cn
  • Received Date: 2021-09-18
  • Accepted Date: 2021-11-11
  • Rev Recd Date: 2021-11-10
  • Available Online: 2021-11-15
  • Publish Date: 2021-12-06
  • A geosynchronous (GEO) satellite can provide continuous illumination with broad beam coverage for a Low Earth Orbit (LEO) receiver, used as the transmitting station of bistatic Synthetic Aperture Radar (SAR). Meanwhile, because the bistatic SAR system comprises a separate transmitter and receiver, the LEO receiver can realize multiview imaging such as downward-, forward-, and backward-looking. Therefore, GEO-LEO bistatic SAR is widely used in earth surveying and mapping to reconnaissance and surveillance application. To realize large-scene imaging, the pulse repetition rate of the GEO SAR transmitter should be low. Meanwhile, the LEO SAR receiver introduces a wide Doppler bandwidth, resulting in the azimuth undersampling of the GEO-LEO bistatic SAR. Although the multichannel technology in the receiver can suppress the ambiguity, the multichannel unambiguous recovery method requires numerous channels, resulting in the undersampling of the GEO-LEO bistatic SAR, and hindering the miniaturization of the receiving system. To address the problem of ambiguous imaging of complex observation scenes under the condition of severe azimuth subsampling condition, a sequential joint multiframe and multireceiving channel recovery unambiguous imaging method is proposed. The unambiguous imaging is recovered jointly from the correlation between sequential multiframe observation scenes and multireceiving channel sampling information. First, the unambiguous imaging problem of the GEO-LEO bistatic SAR is modeled as a joint low rank and sparse tensor optimization problem. Second, in the iterative solution of the alternating direction multiplier method, the multireceiving channel information is used to realize the unambiguous imaging of the GEO-LEO bistatic SAR for complex observation scenes. The proposed method can significantly reduce the number of receiving channels required for unambiguous imaging compared with the imaging method based on traditional multichannel The results obtained by the proposed method are validated by simulations and experiments.

     

  • loading
  • [1]
    TOMIYASU K and PACELLI J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, GE-21(3): 324–329. doi: 10.1109/TGRS.1983.350561
    [2]
    MADSEN S N, EDELSTEIN W, DIDOMENICO L D, et al. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture[C]. IEEE 2001 International Geoscience and Remote Sensing Symposium on Scanning the Present and Resolving the Future, Sydney, Australia, 2001: 447–449.
    [3]
    杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–692. doi: 10.12000/JR19099

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–692. doi: 10.12000/JR19099
    [4]
    邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102

    XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102
    [5]
    孙稚超. 基于GEO辐射源的星机SAR成像理论与方法研究[D]. [博士论文], 电子科技大学, 2017.

    SUN Zhichao. Research on the imaging theory and algorithms of geosynchronous Spaceborne-Airborne Bistatic SAR[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2017.
    [6]
    安洪阳. 基于高轨照射源的双基SAR成像与动目标检测技术研究[D]. [博士论文], 电子科技大学, 2020.

    AN Hongyang. Research on imaging and moving target detection technology of bistatic SAR with geosynchronous illuminator[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
    [7]
    GUTTRICH G L, SIEVERS W E, and TOMLJANOVICH N M. Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception[C]. 1997 IEEE National Radar Conference, Syracuse, USA, 1997: 126–131 .
    [8]
    LU Zheng, WANG Yuekun, XU Mingming, et al. Spacecraft formation design for bistatic SAR with GEO illuminator and LEO receiver[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4451–4454.
    [9]
    WANG Jingen, WANG Yanfei, GE Jialong, et al. Ambiguous scattering point detection of bistatic downward-looking SAR with geostationary illuminator and LEO receiver[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 571–574.
    [10]
    SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/TGRS.2013.2285721
    [11]
    DING Zegang, SHU Bozheng, YIN Wei, et al. A modified frequency domain algorithm based on optimal azimuth quadratic factor compensation for geosynchronous SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1119–1131. doi: 10.1109/JSTARS.2015.2497000
    [12]
    ZHANG Shuangxi, LI Shaojie, LIU Yanyang, et al. A novel azimuth Doppler signal reconstruction approach for the GEO-LEO bi-static multi-channel HRWS SAR system[J]. IEEE Access, 2019, 7: 39539–39546. doi: 10.1109/ACCESS.2019.2904653
    [13]
    WANG Yuekun, LIU Yanyang, LI Zhenfang, et al. High-resolution wide-swath imaging of spaceborne multichannel bistatic SAR with inclined geosynchronous illuminator[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2380–2384. doi: 10.1109/LGRS.2017.2765675
    [14]
    AN Hongyang, WU Junjie, TEH K C, et al. Nonambiguous image formation for low-earth-orbit SAR with geosynchronous illumination based on multireceiving and CAMP[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 348–362. doi: 10.1109/TGRS.2020.2992744
    [15]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [16]
    RECHT B, FAZEL M, and PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3): 471–501. doi: 10.1137/070697835
    [17]
    PU Wei and WU Junjie. OSRanP: A novel way for radar imaging utilizing joint sparsity and low-rankness[J]. IEEE Transactions on Computational Imaging, 2020, 6: 868–882. doi: 10.1109/TCI.2020.2993170
    [18]
    WU Junjie, SUN Zhichao, LI Zhongyu, et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8(10): 840. doi: 10.3390/rs8100840
    [19]
    BI Hui, BI Guoan, ZHANG Bingchen, et al. From theory to application: Real-time sparse SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2928–2936. doi: 10.1109/TGRS.2019.2958067
    [20]
    AN Hongyang, WU Junjie, TEH K C, et al. Geosynchronous spaceborne-airborne bistatic SAR imaging based on fast low-rank and sparse matrices recovery[J]. IEEE Transactions on Geoscience and Remote Sensing. doi: 10.1109/TGRS.2021.3081099.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1375) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint