FDA-MIMO雷达自适应分布式目标Rao检测算法研究

黄榜 王文钦 李萍 简江伟 张顺生

黄榜, 王文钦, 李萍, 等. FDA-MIMO雷达自适应分布式目标Rao检测算法研究[J]. 雷达学报, 待出版. doi: 10.12000/JR21191
引用本文: 黄榜, 王文钦, 李萍, 等. FDA-MIMO雷达自适应分布式目标Rao检测算法研究[J]. 雷达学报, 待出版. doi: 10.12000/JR21191
HUANG Bang, WANG Wenqin, LI Ping, et al. Adaptive distributed target detection for FDA-MIMO radar with rao detector[J]. Journal of Radars, in press. doi: 10.12000/JR21191
Citation: HUANG Bang, WANG Wenqin, LI Ping, et al. Adaptive distributed target detection for FDA-MIMO radar with rao detector[J]. Journal of Radars, in press. doi: 10.12000/JR21191

FDA-MIMO雷达自适应分布式目标Rao检测算法研究

doi: 10.12000/JR21191
基金项目: 国家自然科学基金(62171092)
详细信息
    作者简介:

    黄榜(1994–)男,湖北恩施人,现为电子科技大学在读博士生,主要研究方向为FDA-MIMO雷达、统计信号处理

    王文钦(1979–),男,四川成都人。教授,博士生导师,主要研究方向为阵列处理及其在雷达、通信和电子对抗中的应用研究

    李 萍(1995–),女,四川南充人,现为电子科技大学在读研究生,主要研究方向为阵列信号处理

    简江伟(1998–),男,贵州德江人。现为电子科技大学在读研究生,主要研究方向为阵列信号处理

    张顺生(1980–),男,四川成都人。研究员,博士生导师,主要研究方向为雷达信号处理

    通讯作者:

    王文钦 wqwang@uestc.edu.cn

  • 责任主编:朱圣棋 Corresponding Editor: ZHU Shengqi
  • 中图分类号: TN958

Adaptive Distributed Target Detection for FDA-MIMO Radar with Rao Detector

Funds: The National Natural Science Foundation of China (62171092)
More Information
  • 摘要: 由于FDA-MIMO具有的超分辨特性使得可以在单个距离分辨单元之内利用目标更多的散射点,本文将高斯杂波背景下协方差矩阵未知的分布式目标检测问题建立为一个求和形式而非MIMO或相控阵雷达中仅考虑单点目标问题。进而,设计了无须训练数据的自适应Rao检测器。理论分析和仿真结果均验证了该算法的正确性和有效性。

     

  • 图  1  检测概率随SCR的变化,其中$K = 2N$

    Figure  1.  Detection probability versus SCR, when $K = 2N$

    图  2  检测概率随SCR的变化,其中$K = 4N$

    Figure  2.  Detection probability versus SCR, when $K = 4N$

    图  3  检测概率随SCR的变化,其中$K = 16N$

    Figure  3.  Detection probability versus SCR, when $K = 16N$

    图  4  检测概率随失配量的变化,其中SCR=–10d B,K = 2N

    Figure  4.  Detection probability versus ${\cos ^2}\phi $, with SCR=–10 dB, K = 2N

    图  5  检测概率随失配量的变化,其中SCR=–10 dB, K = 4N

    Figure  5.  Detection probability versus ${\cos ^2}\phi $, with SCR=–10 dB, K = 4N

  • [1] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]//2006 IEEE Conference on Radar. Verona, NY, USA: : 215–217.
    [2] GAO K, WANG W, CAI J, et al. Decoupled frequency diverse array range–angle-dependent beampattern synthesis using non-linearly increasing frequency offsets[J]. IET Microwaves, Antennas Propagation, 2016, 10(8): 880–884. doi: 10.1049/iet-map.2015.0658
    [3] 茆健. 高速平台FDA-MIMO雷达距离模糊杂波抑制方法研究[D]. 2019. 西安电子科技大学, MA thesis.
    [4] BASIT A, WANG W-Q, NUSENU S Y, et al. FDA Based QSM for mmWave Wireless Communications: Frequency Diverse Transmitter and Reduced Complexity Receiver[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4571–4584. doi: 10.1109/TWC.2021.3060512
    [5] GUI R, HUANG B, WANG W-Q, et al. Generalized Ambiguity Function for FDA Radar Joint Range, Angle and Doppler Resolution Evaluation[J]. IEEE Geoscience and Remote Sensing Letters, 2020: 1–5.
    [6] 姬士龙. 基于频控阵的物理层安全关键技术研究[D]. 2020. 电子科技大学, PhD dissertation.
    [7] LAN L, XU J, LIAO G, et al. Suppression of Mainbeam Deceptive Jammer With FDA-MIMO Radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11584–11598. doi: 10.1109/TVT.2020.3014689
    [8] ZHOU Y, WANG W, CHEN Z, 等. A Novel High-Resolution and Wide-Swath SAR Imaging Mode Using Frequency Diverse Planar Array[C]//EUSAR 2021; 13th European Conference on Synthetic Aperture Radar. : 1–5.
    [9] ZHOU Y, WANG W, CHEN Z, et al. High-Resolution and Wide-Swath SAR Imaging Mode Using Frequency Diverse Planar Array[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 321–325. doi: 10.1109/LGRS.2020.2974041
    [10] HUANG B, WANG W-Q, ZHANG S, et al. A Novel Approach for Spaceborne SAR Scattered-Wave Deception Jamming Using Frequency Diverse Array[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1568–1572. doi: 10.1109/LGRS.2019.2950454
    [11] HUANG B, WANG W-Q, ZHANG S, et al. FDA-Based Space-Time-Frequency Deceptive Jamming Against SAR Imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021.
    [12] HUANG L, ZONG Z, ZHANG S, et al. 2-D Moving Target Deception Against Multichannel SAR-GMTI Using Frequency Diverse Array[J]. IEEE Geoscience and Remote Sensing Letters, 2020: 1–5.
    [13] LI J, STOICA P. MIMO Radar Signal Processing[M]. New York, USA: John Wiley & Sons, Inc.
    [14] TAN M, WANG C, LI Z. Correction Analysis of Frequency Diverse Array Radar About Time[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 834–847. doi: 10.1109/TAP.2020.3016508
    [15] XU J, LIAO G, ZHU S, et al. Joint Range and Angle Estimation Using MIMO Radar With Frequency Diverse Array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. doi: 10.1109/TSP.2015.2422680
    [16] 桂荣华. 频控阵雷达自适应处理关键技术研究[D]. 2020. 电子科技大学, PhD dissertation.
    [17] CHENG J, WANG W-Q, ZHANG S. Joint MIMO and Frequency Diverse Array for Suppressing Mainlobe Interferences[C]//2020 International Symposium on Antennas and Propagation (ISAP). : 171–172.
    [18] LAN L, LIAO G, XU J, et al. Suppression Approach to Main-Beam Deceptive Jamming in FDA-MIMO Radar Using Nonhomogeneous Sample Detection[J]. IEEE Access, 2018, 6: 34582–34597. doi: 10.1109/ACCESS.2018.2850816
    [19] LAN L, MARINO A, AUBRY A, et al. GLRT-Based Adaptive Target Detection in FDA-MIMO Radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 597–613. doi: 10.1109/TAES.2020.3028485
    [20] HUANG B, BASIT A, GUI R, et al. Adaptive Moving Target Detection Without Training Data for FDA-MIMO Radar[J]. IEEE Transactions on Vehicular Technology, 2021: 1–1.
    [21] GUI R, WANG W-Q, ZHENG Z. Low-complexity GLRT for FDA radar without training data - ScienceDirect[J]. Digital Signal Processing, 2020: 107.
    [22] WAN W, ZHANG S, WANG W-Q. Resolving Doppler Ambiguity of High-speed Moving Targets via FDA-MIMO Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021: 1–1.
    [23] WANG C, XU J, LIAO G, et al. A Range Ambiguity Resolution Approach for High-Resolution and Wide-Swath SAR Imaging Using Frequency Diverse Array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 336–346. doi: 10.1109/JSTSP.2016.2605064
    [24] ZHU J, YU K, ZHU S, et al. Application of Frequency Diverse Array to Resolve Range Ambiguity for SAR Imaging[C]//2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). : 1–5.
    [25] LAN L, LIAO G, XU J, et al. Transceive Beamforming With Accurate Nulling in FDA-MIMO Radar for Imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4145–4159. doi: 10.1109/TGRS.2019.2961324
    [26] GUI R, WANG W-Q, FARINA A, et al. FDA radar with doppler-spreading consideration: Mainlobe clutter suppression for blind-doppler target detection[J]. Signal Processing, 2021, 179: 107773. doi: 10.1016/j.sigpro.2020.107773
    [27] ZHU Y, LIU L, LU Z, et al. Target Detection Performance Analysis of FDA-MIMO Radar[J]. IEEE Access, 2019, 7: 164276–164285. doi: 10.1109/ACCESS.2019.2943082
    [28] CHEN X, CHEN B, GUAN J, et al. Space-Range-Doppler Focus-Based Low-observable Moving Target Detection Using Frequency Diverse Array MIMO Radar[J]. IEEE Access, 2018, 6: 43892–43904. doi: 10.1109/ACCESS.2018.2863745
    [29] CAI L, WANG H. A persymmetric multiband GLR algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 806–816. doi: 10.1109/7.256301
    [30] KELLY E J. An Adaptive Detection Algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
    [31] F. C. ROBEY, D. R. FUHRMANN, E. J. KELLY, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446
    [32] DE MAIO A. Rao Test for Adaptive Detection in Gaussian Interference With Unknown Covariance Matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577–3584. doi: 10.1109/TSP.2007.894238
    [33] SUN S, LIU J, LIU W. Rao Test With Improved Robustness for Range-Spread Target Detection[C]//2020 28th European Signal Processing Conference (EUSIPCO). Amsterdam, Netherlands: IEEE: 1916–1920.
    [34] LIU J, GAO M, ZHENG J, et al. Model-Based Wald Test for Adaptive Range-Spread Target Detection[J]. IEEE Access, 2020, 8: 73259–73267. doi: 10.1109/ACCESS.2020.2988066
    [35] CUI G, LI N, YANG X, et al. Rao and Wald tests design of multiple-input multiple-output radar in compound-Gaussian clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(8): 729–738.
    [36] LIU J, LIU W, TANG B, et al. Distributed Target Detection Exploiting Persymmetry in Gaussian Clutter[J]. IEEE Transactions on Signal Processing, 2019, 67(4): 1022–1033. doi: 10.1109/TSP.2018.2887405
    [37] BURGESS K A, VAN VEEN B D. Subspace-based adaptive generalized likelihood ratio detection[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 912–927. doi: 10.1109/78.492544
    [38] DE MAIO A, ORLANDO D. Adaptive Radar Detection of a Subspace Signal Embedded in Subspace Structured Plus Gaussian Interference Via Invariance[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2156–2167. doi: 10.1109/TSP.2015.2507544
    [39] GAO Y, JI H, LIU W. Persymmetric adaptive subspace detectors for range-spread targets[J]. Digital Signal Processing, 2019, 89: 116–123. doi: 10.1016/j.dsp.2019.03.007
    [40] MAIO A D. A new derivation of the adaptive matched filter[J]. IEEE Signal Processing Letters, 2004, 11(10): 792–793. doi: 10.1109/LSP.2004.835464
    [41] KAY S. Fundamentals of Statistical Signal Processing, Volume II[M]. Prentice Hall.
    [42] LIU W, WANG Y, LIU J, et al. Adaptive detection without training data in colocated MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2469–2479. doi: 10.1109/TAES.2015.130754
    [43] CONTE E, MAIO A D, GALDI C. CFAR detection of multidimensional signals: an invariant approach[J]. IEEE Transactions on Signal Processing, 2003, 51(1): 142–151. doi: 10.1109/TSP.2002.806554
    [44] LIU W, XIE W, WANG Y. Parametric detector in the situation of mismatched signals[J]. IET Radar Sonar and Navigation, 2014, 8(1): 48–53. doi: 10.1049/iet-rsn.2013.0044
    [45] GUI R, WANG W-Q, SHAO H. General receiver design for FDA radar[C]//2018 IEEE Radar Conference (RadarConf18). : 0280–0285.
    [46] LIU J, ZHANG Z-J, YANG Y. Optimal waveform design for generalized likelihood ratio and adaptive matched filter detectors using a diversely polarized antenna[J]. Signal Processing, 2012, 92(4): 1126–1131. doi: 10.1016/j.sigpro.2011.11.006
  • 加载中
图(5)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  44
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26

目录

    /

    返回文章
    返回