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1  Introduction  
As an important ElectroMagnetic (EM) 

scattering signature of radar target other than 
Radar Cross Section (RCS), angular glint that 
often causes radar pointing to fall beyond the 
actual target extent[1] is the major error factors to 
severely affect the seeker tracking and homing 
guiding precision. Consequently, the reasonable 
modeling and simulation of the angle measurement 
error resulting from angular glint are of great 
importance for radar engineers to investigate the 
suppression techniques of angular glint in the 
design and evaluation of guidance systems. 
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Attentions have been paid to the mechanism as 
well as calculation techniques of the angular glint 
for extended radar targets[2－14]. 

The phase-front distortion concept of angular 
glint was initially proposed by Howard[2], who 
interpreted angular glint as the tilt of wavefront 
normal resulting from a distortion of target echo 
signal phase by analyzing the phase front of the 
echo signal from an extended target consisting of 
two or multiple collinear, isotropic reflectors. 
Lindsay[3] extended Howard’s concept to represent 
glint effect by the phase gradient. Later on, based 
on an analysis of the echo signal from a target 
model consisting of a collinear, nonuniform array 
of electric dipoles by the derivation of the Poynting 
vector, Dunn and Howard[4] proposed the energy- 
flow tilt concept to explain angular glint as a tilt of 
the echo signal propagating in space, and showed 
that two concepts are equivalent. Since then, both 



120                                           Journal of Radars                                          Vol. 3 

concepts from the analysis of two special target 
models have been widely accepted to explain 
angular glint phenomenon. Correspondingly, two 
techniques, i.e. the Phase Gradient Method (PGM) 
and the Poynting Vector Method (PVM), were 
adopted to calculate the linear deviations of 
angular glint for complex target[4－14]. 

Although no objection was raised against the 
correctness of the two concepts, there indeed exists 
an argument about the equivalence of them. Yin 
and Huang[15] noticed that the energy-flow 
propagating direction agrees with the wavefront 
normal under Geometrical Optics (GO) 
approximation, and firstly demonstrated that the 
equivalence between the two concepts exists only 
when GO approximation is made. Kajenski[16] 

showed that these two concepts yield identical 
results of angular glint by considering the 
polarization effect of the receiving antenna in 
Poynting vector analysis of a target model 
consisting of an electric dipole and a magnetic 
dipole. Further, Yin and Huang[17] analyzed the 
angular glint of a typical target consisting of two 
combined electric and magnetic dipoles with 
arbitrary orientation, and pointed out that both 
concepts yield identical results only when GO 
approximation is used and the receiving antenna is 
linearly polarized. As a complement and support of 
argumentation in Ref. [17], Wang et al.[18] provided a 
general discussion about the two concepts of radar 
target angular glint in view of ElectroMagnetic 
(EM) theory. From Refs. [2-4] and Refs. [15-17], it 
was concluded that both concepts are conditionally 
equivalent. This naturally motivates us to 
investigate a third problem: whether the angular 
glint calculated by either of the two concepts is 
consistent with the angular noise given by the 
angle error detector of a monopulse radar for an 
arbitrary target. The answer to the above question 
involves the joint formulation and analysis of EM 
scattering problem and monopulse radar angle 
measurement, and is certainly of great value for 
better understanding of the concepts as well as for 
reasonable modeling of angular glint.  

Based on the rigorous EM theory and 
monopulse radar angle measurement principle, this 

paper aims at discovering the relationship among 
phase-front distortion concept, energy-flow tilt 
concept, and monopulse radar angle measurement 
principle so as to establish a firm theoretical 
foundation for simulation and suppression of 
angular glint. The remainder of the paper is 
organized as follows. In Section 2, the general 
formulae of angle measurement errors for sum- 
difference amplitude-comparison and phase- 
comparison monopulse radars are derived from EM 
theory. In Section 3, angular glint deviations 
obtained by phase-front distortion concept and 
energy-flow tilt concept are compared and 
analyzed with the angular errors given by mono- 
pulse radar angle measurements. We conclude the 
paper in Section 4. 

2   Angular Glint in Terms of Monopulse 
Radar Angle Measurement 

The past literatures clearly demonstrated the 
equivalence of two concepts of angular glint only 
when GO approximation is made and the receiving 
antenna is linearly polarized. In such case, which 
one is more accurate, or whether the angular glint 
calculated by either one coincides with angle noise 
given by angle error detector of monopulse radar, is 
the problem concerned. Therefore, it is required for 
us to obtain the general formulae of angular glint 
for complex target from EM theory and monopulse 
radar angle measurement principle as a benchmark 
of the following comparison and analysis. 

Taking two representative cases for instance, 
the angular errors for sum-difference amplitude- 
comparison and phase-comparison monopulse 
radars[19] are formulated from EM theory in this 
section. 

Let us briefly describe Antenna Coordinate 
System (ACS) and Target Coordinate System 
(TCS) at first. Fig. 1 defines ACS OXYZ with its 
origin O at the center of receiving antenna, where 
X axis is chosen to be the direction of antenna axis, 
XOZ plane and XOY plane are elevation plane and 
azimuth plane of antenna, ψ  and ξ  are 
respectively elevation angle and azimuth angle of 
scattered wave from target illuminating radar 
antenna. Fig. 2 defines TCS oxyz with its origin o  
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Fig. 1  ACS definition 

 

Fig. 2  TCS definition and its relation to ACS 

at the center of target, where θ and ϕ are elevation 

angle and azimuth angle of radar wave illuminating 

target respectively, and the elevation plane 

coincides with one in ACS. For convenience, 

supposing that X axis points toward the origin o in 

TCS, the receiving antenna is located at the 

far-field region of target, and the origin O in ACS 

is located at ( , , )r θ ϕ=r  in TCS, then X axis, Y 

axis, and Z axis are respectively oriented along 

with , − −r ϕ and −θ , a source point  in the 

region Ω surrounded by target at 'r  in TCS is 

transferred to a point ( , ,OXYZ' r ' '= − ⋅ − ⋅r r r r ϕ  

)'− ⋅r θ  in ACS, and the distance from a point 

0 0 0 0( , , )P X Y Z=  in ACS to a point 'r  in TCS is 

2 2 2
0 0 0 0( ) ( ) ( )R ' X r ' Y ' Z= ⋅ + − + ⋅ + + ⋅ +r r r rϕ θ   

    (1) 

2.1 Angle measurement error formulation of sum- 
difference amplitude-comparison monopulse radar 

Assuming that radar antenna axis initially 
points toward target center o, after radar begins to 
track target, the interference between echoes from 
the radiated sources of target makes it no longer 
aim at point o, and the corresponding angle 
deviation is namely angular glint of radar target. 
Let us consider the case in the elevation plane, 
where the directional functions of two antenna 
beams are identical to be ( ),Fθ α α is angle between 
scattered wave and principal axis of beam, and α0 
is angle of each principal axis deviated from 
antenna axis, as shown in Fig. 3. 

For scattered wave with elevation angle ψ , 
the direction functions of sum beam and difference 
beam of the receiving antenna are respectively 

0 0( ) ( ) ( )F F Fθ θ θψ α ψ α ψΣ = − + +      (2a) 

0 0( ) ( ) ( )F F Fθ θ θψ α ψ α ψΔ = − − +      (2b) 

From Eqs. (11a) and (11c) in Ref. [18], the 
received signals in sum and difference channels are 
respectively 
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where 2 /k π λ=  is the wave number, /r= =s r r  
is the radial unit vector of scattering direction, and 

( , , )A ' θ ϕr  is defined as the receiving factor which 

 
Fig. 3  Antenna beams of sum-difference amplitude- 

comparison monopulse radar 

 



122                                           Journal of Radars                                          Vol. 3 

describes polarization effect of the receiving antenna 
versus the radiated sources or the equivalent 
currents at ,'r  see also Eq. (11c) in Ref. [18]. 

The elevation angle ψ  and the azimuth angle 
ξ  at 'r  in ACS can be respectively represented as 
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When radar tracks target, ( )'ψ r  is usually 
very small (less than 2° ), then the directional 
function of the receiving antenna in elevation plane 
is approximately 
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So the received signals in sum and difference 
channels in elevation plane are given by 
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Then, the normalized voltage output by phase 
detector in elevation plane is 
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For sum-difference amplitude-comparison 
monopulse radar, angle measurement error ψ  
and the normalized voltage satisfy that 
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Using the first order Taylor series expansion, 
Eq. (8) is approximated as 

( )Sθ θψ μ ψ≈                (9) 

From Eqs. (7) and (9), the angle measurement 
error is 
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So angular glint linear deviation in elevation 
plane is  

( ) ( , , ) d

Re
( , , ) d

jk '

ac
jk '

' A ' e v'

e
A ' e v'

Ω
θ

Ω

θ ϕ

θ ϕ

⋅

⋅

⎡ ⎤⋅⎢ ⎥
⎢ ⎥

= − ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∫

s r

s r

r r

r

θ

    (11) 

Similarly, angular glint linear deviation in 
azimuth plane is 
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2.2 Angle measurement error formulation of 
sum-difference phase-comparison monopulse radar 

In Fig. 4, the four receiving antennas of 
sum-difference phase-comparison monopulse radar 
are respectively located at four vertexes of a square 
with length 2a. The directional functions of four 
antenna beams are identical to be ( ),F ψ ξ , the 
principal axis of beam is chosen to be X direction. 

The electric field received by No. 1 antenna at 
1 (0, , )OXYZP a a=  is 
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where 1R  denotes the distance from the integral 
source point 'r  at target to point P1, 1R r≈  for 

 
Fig. 4  Geometry of four antennas of sum-difference 

phase-comparison monopulse radar 
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computing the field amplitudes, and for computing 
the field phase, 

2 2 2
1

2

( ) ( ) ( )

   ( ) ( ) (14)

R ' r ' a ' a

a a ar ' ' '       
r r r

= ⋅ − + ⋅ + + ⋅ +

≈ − ⋅ + + ⋅ + ⋅

r r r r

r r r r

ϕ θ

ϕ θ
 

So the electric field received by No.1 antenna 
is approximated as 
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The electric fields received by Nos. 2, 3, 4 
antennas can be also obtained by similar derivation, 
which are not given here as the length of paper is 
limited. In far-field zone of target, ( )'ψ r  and ( )'ξ r  
are usually very small, and let [ ]0 ( ), ( )F F ' 'ψ ξ≈ r r , 
then 
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So the received signals in sum and difference 
channels are given by 
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Considering π/2 phase shift introduced in 
difference channel, the normalized voltage outputs 
by phase detectors in elevation plane and azimuth 
plane are respectively 
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For sum-difference phase-comparison mono- 
pulse radar, angle measurement error and the 
normalized voltage satisfy that 

( ) tan( sin )S ka kaψ ψ ψ= ≈        (20) 

From Eqs. (19) and (20), we obtain angular 
glint linear deviations as 
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2.3 Comparison and analysis of two angle 
measurement error formulae 

Comparison between Eqs. (11), (12) and (21a), 
(21b) shows that, angular glint linear deviations 
are the same for two kinds of angle measurement 
systems of monopulse radar, which means that 
angular glint only depends on target itself. The 
above formulae, which have never been presented 
in any published radar textbooks as far as we know, 
are easier to be implemented by the widely used 
high frequency techniques[20] or numerical 
methods[21, 22] for solving EM scattering problems, 
and constitute the general expressions of angular 
glint linear deviations of complex target for 
arbitrary polarization of the receiving antenna.  

From Eq. (21), the denominator in Re[ ]⋅  
operator is the far-field integral of the radiated 
source of target, i.e. the total scattered field, and 
the numerator in Re[ ]⋅  operator is the far-field 
integral of this source weighted with its displace- 
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ment from target center in elevation or azimuth 
plane, named as the source position vector 
projection weighted scattered field, all sensed by 
radar antenna, so angular glint linear deviation is 
shown to be the real part of the ratio of both them. 

The N-point target as a collection of N 
isotropic point scatterers arbitrarily distributed in 

space given in radar textbook[23] is adopted to 
verify Eq. (21). In this case, the receiving factor 
and the position vectors of the ith scatterer are Ai 
and ( )0,1, , ,i i N=r  respectively, the observation 
angles are ( , )θ ϕ , then the integrals of Eqs. (21a) 
and (21b) are simplified into the sum of all discrete 
sources, i.e. 
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For an isotropic point scatterer, Ai can be 
given by 
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where Ei is the constant amplitude of scatterer, iδ  
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Substituting Eqs. (23) and (24) into Eq. (22), 
after simplification, Eqs. (22a) and (22b) become 
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                (25b) 

Eqs. (25a) and (25b) are the well-known 
conventional expressions of angular glint linear 
deviations, which verify the correctness of Eq. (21) 
indirectly. For the N-point target consisting of N 
anisotropic point scatterers[11], Eq. (21) may be 
also similarly verified. 

3  Inherent Relationships among the Three 
Representations 

The expressions of angular glint linear 
deviation in Section 2, which are obtained from 
specific angle measurement radar systems based on 
rigorous EM theory, are general and can be used as 
benchmark to compare the related concepts and 
calculation methods. 

A closed comparison between Eq. (24) in Ref. 
[18] and Eq. (21) shows that, the results obtained 
by PGM differ from those by monopulse radar 
angle measurement analysis, which evidently 
deviates from Howard’s authoritative explanation 
based on the phase-front distortion concept of 
angular glint[2]. However, due to the isotropic point 
scatterer assumption in Howard’s analysis, both 
the partial derivatives of ( , , )A ' θ ϕr  with respect 
to θ  and ϕ  in Eq. (24) in Ref. [18] equal to zero, 
the results of PGM are just degenerated into ones 
of angle measurement analysis. Since scattering 
element has relation to observation angle in 
general case, Howard’s phase-front distortion 
concept should be revised to be that angular glint 



No. 2    Yin Hong-cheng et al.:  Inherent Relations among the Three Representations of Radar Target Angular Glint  125 

results from the phase-front distortion of echo 
signal caused by the variation rate of wave path- 
difference of the radiated source of target with 
observation angle. Furthermore, the first term in 
Eq. (24a) or Eq. (24b) in Ref. [18] is identical to 
the result of angle measurement analysis, the 
additional second term is proportional to 1k−  and 
vanishes for k → ∞ . Therefore, the results of 
PGM are equivalent to those of angle measurement 
analysis under GO approximation (k → ∞ ).  

On the other hand, a comparison between Eq. 
(25) in Ref. [18] and Eq. (21) shows that, the 
results obtained by PVM differ from those by angle 
measurement analysis, too. However, if linearly 
polarized receiver ( sin 2 0rθ =  or sin 0rδ = ) is 
used in Eq. (25) in Ref. [18], both are equivalent. 
Therefore, the energy-tilt concept should be 
restated as follows: angular glint of extended target 
may be represented by the energy-flow direction 
tilt of the echo signal propagating in space from 
the radial direction for a linearly polarized 
receiver.  

For supporting the above discussion, as shown 
in Fig. 5, we consider an helicopter model with 
length 17.4 m, width 12.7 m, and height 6.1 m, and 

illuminated by a plane EM wave with an electric 
polarization vector cos30 sin30 exp( 40 )i j= °+ ° °p θ ϕ   
at 10 GHz propagating in the xoy plane, and 
calculate the appropriate azimuth and elevation 
data of angular glint linear deviations from Eqs. 
(24), (25) in Ref. [18] and Eq. (21) by using high- 
frequency method[24]. The predicted mono-static 
angular glint linear deviations of this model as a 
function of azimuth angle ϕ  are respectively 
presented in Figs. 6 and 7 for linearly and 
elliptically polarized receivers with cos30r = °+p θ  

sin 30°ϕ and cos 30 sin 30 exp( 40 ),r j= °+ ° − °p θ ϕ  
where the differences between the results by PGM 

 

Fig. 5  Geometry of a helicopter model 

Fig. 6  Angular glint linear deviation of a helicopter model as a function of azimuth angle ϕ for a linearly polarized receiver  



126                                           Journal of Radars                                          Vol. 3 

Fig. 7  Angular glint linear deviation of a helicopter model as a function of azimuth angle ϕ for an elliptically polarized receiver 

or PVM and monopulse radar angle measurement 
(MRAM) respectively are also given in order to 
distinguish the discrepancy between the said two 
results more remarkably. For a linearly polarized 
receiver, PVM and MRAM lead to the same result, 
but there is a significant difference between them 
for an elliptically polarized receiver, and thus PVM 
can’t give correct results. For any large k, PGM 
gives the results deviated from MRAM, although 
the deviations, which depend on observation angle, 
frequency, polarization, etc., are relatively small in 
most situations and can be neglected. Evidently, 
the inherent relationships among the three 
representations as mentioned are also indicated. 

To summarize, when PGM is applied to 
calculate angular glint of complex target, there is 
always a difference between PGM prediction and 
real value as long as 0λ ≠ , because the rate of 
change of the amplitude and phase of the radiated 
source with observation angle is usually unable to 
be separated from echo signal of target. On the other 
hand, PVM can yield the same results as angle 
measurement analysis for the determined linear 
polarization reception. In this sense, it may be 
thought that PVM is accurate than PGM.  In 

general, the formulae of angular errors derived 
from rigorous EM theory and monopulse radar 
angle measurement principle, i.e. Eqs. (11), (12) or 
Eqs. (21a), (21b), are suggested to be adopted in 
tackling practical problems. 

4  Conclusions 
The formulae of angular errors for sum- 

difference amplitude-comparison and phase- 
comparison monopulse radars obtained from 
rigorous EM theory are presented, and may be 
generally applied to tackling practical problems, 
from which angular glint linear deviation is shown 
to be the real part of the ratio of the source 
position vector projection weighted scattered field 
and the total scattered field, all received by the 
radar antenna. Further comparison and discussion 
about phase-front distortion concept, energy-flow 
tilt concept, and angle measurement error are 
given to demonstrate that angular glint of an 
extended target may be explained as the phase- 
front distortion of echo signal caused by the 
variation rate of wave path-difference of the 
radiated source of target as a function of 
observation angle, or as a distortion or tilt of the 



No. 2    Yin Hong-cheng et al.:  Inherent Relations among the Three Representations of Radar Target Angular Glint  127 

echo signal propagating in space when the 
receiving antenna is linearly polarized. PGM yields 
the same results of angular glint as angle 
measurement analysis under GO approximation, 
and so does PVM under linearly polarized receiving 
antenna. This work establishes a theoretical 
foundation for researchers to reasonably understand, 
model and simulate the angular glint of complex 
radar targets. 
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