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Abstract: This study proposes a high-resolution radar imaging method combined with the sparse low-rank

matrix recovery technique and the deconvolution algorithm based on the matched filtering result. We establish

a two-Dimensional (2D) convolution model for the radar signal after the Matched Filter (MF) to maximize the

Signal-to-Noise Ratio (SNR) and use the 2D deconvolution algorithm of the Wiener filter to obtain a high

resolution. However, representative deconvolution algorithms are confronted with an ill-posed problem, which

magnifies the noise while influencing the imaging resolution. Prior to this study, the echo matrix after the MF

was proven to be sparse and low rank under the constraint of a sparsely distributed target. The target

distribution is smoothed by the influence of the point spread function. Hence, inspired by these points, we

further enhance the SNR of the echo matrix based on the sparse and low-rank characteristics to alleviate the ill-

posed problem of deconvolution and the poor resolution of the Wiener filter. The performance of the proposed

method is demonstrated by the real experimental data.

Key words: High resolution radar imaging; Echo denosing; Two-dimensional deconvolution; Low rank matrix

recovery

DOI: 10.12000/JR17108

Reference format: Lu Xinfei, Xia Jie, Yin Zhiping, et al.. High-resolution radar imaging using 2D deconvolution

with sparse echo denoising[J]. Journal of Radars, 2018, 7(3): 285–293. DOI: 10.12000/JR17108.

引用格式：陆新飞, 夏洁, 尹治平, 等. 基于两维解卷积和稀疏回波去噪的高分辨雷达成像方法[J]. 雷达学报, 2018,

7(3): 285–293. DOI: 10.12000/JR17108.

基于两维解卷积和稀疏回波去噪的高分辨雷达成像方法

陆新飞①②      夏  洁①②      尹治平③      陈卫东①②

①(中国科学技术大学电子工程与信息科学系   合肥   230027)
②(中国科学院电磁空间信息重点实验室   合肥   230027)

③(合肥工业大学光电技术研究院   合肥   230009)

摘   要：该文提出了一种结合稀疏低秩矩阵恢复技术以及基于匹配滤波结果的反卷积算法的高分辨率雷达成像方

法。对雷达回波信号进行匹配滤波操作可以最大化回波信噪比，通过推导发现经过匹配滤波操作后的回波信号可

以建模为两维卷积的形式，对该结果做维纳滤波解卷积可以获得较高的分辨率。然而典型的解卷积算法面临着病

态性问题，该问题会放大解卷积后的噪声、限制解卷积后的成像分辨率。文中证明了在目标稀疏分布的先验下，

经过匹配滤波后的回波矩阵满足稀疏低秩的特性。在这种情况下，利用回波矩阵的稀疏低秩矩阵特征可以进一步

提高信噪比，以减轻解卷积的病态性问题以及点扩散函数的平滑卷积造成目标散射低分辨率的影响。仿真实验以

及实测数据证明了所提方法的有效性。
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1    Introduction

High resolution radar imaging has been
widely used in target scattering diagnostics and
recognition. As we all know, high resolution in
range dimension is derived from the bandwidth of
the transmitting signal and in the cross range di-
mension from synthetic aperture of multiple spa-
tial positions. Under the fixed bandwidth and the
synthetic aperture, traditional Matched Filter
(MF) based methods for radar imaging suffer
from low resolution and high sidelobes limited by
the synthetic aperture[1].

In order to improve the resolution and sup-
press the sidelobes, many high resolution meth-
ods have been applied to radar imaging. For ex-
ample, the recently introduced theory of Com-
pressed Sensing (CS) provides an idea to improve
the resolution and reduce the amounts of meas-
urement data under the constraint of sparsely dis-
tributed target prior, which has been widely ex-
plored for applications of radar imaging [2–4].
However, conventional CS methods are confron-
ted with a range of problems in practical scenari-
os, such as complexity in calculation, high Signal-
to-Noise Ratio (SNR) requirement, model mis-
match caused by off grid problem[5], phase mis-
match[6], frequency error[7] and position error[8]. To
avoid the off grid problem of CS, modern spec-
tral estimation methods like MUltiple SIgnal
Classification (MUSIC), matrix pencil and Estim-
ation of Signal Parameters via Rotational Invari-
ance Techniques (ESPRIT) have been used in
radar imaging for resolution improvement [9 ].
However, most those methods suffer from per-
formance degradation when there is little prior
knowledge of the exact numbers of the scatters or
under low SNR condition. Recently, the atomic
norm minimization algorithm[10] based on continu-
ous compressed sensing is introduced to enhance
the SNR of the received echo and using Vander-
monde decomposition to eliminate the grid mis-
match. Nevertheless, this method can only be
tailored to a specific model and brings huge com-
putational cost.

Consideration the aforementioned fact while
combining the sparsity low rank matrix recovery
technology and deconvolution algorithm, we in-

troduce a high resolution radar imaging method
based on the MF result. Firstly we establish the
convolution model of target’s backscatter coeffi-
cients and the Point Spread Function (PSF), and
then we want to use the deconvolution method
like Wiener filter to improve the radar imaging
resolution. However, the performance improve-
ments of those methods depend on high SNR, and
their super resolution performance is visibly af-
fected by the low pass character of the PSF[11].
Although the MF result has enhanced the SNR,
we can further improve the echo SNR by the
sparsity and low rank matrix recovery. Low rank
matrix recovery has been applied in many signal
processing applications to estimate a low rank
matrix from its noisy observation[12, 13]. Combinng
the sparsity of the echo matrix, we modify the
low rank matrix recovery and introduce it to
radar echo denoising, which can improve the per-
formance of the two-Dimensional (2D) deconvolu-
tion. Finally, some experimental results are con-
ducted to verify the effectiveness of the proposed
method.

h¢i

k¢kF k¢k1 k¢k¤

Notation: (·)T, (·)H and (·)* denote the trans-

pose, the conjugate transpose and the conjugate

operation, respectively. ,﹡, and ☉ indicate the

inner product, the convolution and the Hadam-

ard product. , ,  are the Frobenius

norm, sum of the absolute values and the nuclear

norm.

2    Model Establishment

¾xy µm

Considering a typical arrangement for radar
imaging in which an object with scattering re-
flectivity  rotated by a scan angle  (as
shown in Fig. 1), we defined the positions of the
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Fig. 1  Radar imaging geometry
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transmitting and receiving antenna shown in a

Cartesian coordinate as (W/2, –R, H) and (–W/2,

–R,H), where W, R, H represent the antenna spa-

cing, distance from antenna to XZ plane and XY

plane, respectively.

fn

Transmitting a stepped-frequency signal with

frequency  and under Born approximation, the

received scattered echo with Gauss noise Wmn is

given by:

Ymn =

Z Z
S

¾xye¡j2 f nR(x ;y;µm)=cdxdy+Wmn (1)

fn = f 0+ n¢f ;n = 0; 1 ¢¢¢;N ¡ 1

f 0 ¢f

µm = m¢µ;m = 0; 1; ¢¢¢;M ¢µ

R (x ; y; µm)

In this equation: ,

 and  represent the start frequency and fre-

quency step, ,  rep-

resents the rotating angle step, respectively. The
range  from the transmitting antenna

to echo scattering center and to the receiving an-
tenna can be calculated as Eq. (2):

R (x ; y; µm) =

sµ
x cos µm ¡ y sin µm +

W
2

¶2

+ (x sin µm + y cos µm + R)2 + H 2

+

sµ
x cos µm ¡ y sin µm ¡

W
2

¶2

+ (x sin µm + y cos µm + R)2 + H 2 (2)

R (x ; y; µm)

In far-field and small rotation angle case,
 can be approximated by first order

Taylor-series expansion as:

R (x ; y; µm) ¼ 2
³
R0+ (x +m¢µy)R=R0

´
(3)

R0 =
q

R2 + (W=2)2 + H 2where .

Then the received echo can be written as fol-
low under some approximated conditions:

~Ymn =

Z Z
S

~¾xye
¡j4

R¢µ

¸R0
mx

e
¡j4

R¢f
R0c

ny
dxdy+Wmn (4)

~¾xy=¾xye¡j4 Ry=̧ R0 ~Ymn=Ymnej4 fnR0=c ¸¼c=f 0where , , .

After discrete imaging region with P×Q
grids, the received echo in Eq. (4) can be de-
scribed as the following 2D linear signal model:

~ = x
~ T

y + (5)

~ =
h
~Ymn

i
M£N

~ =[~¾pq]P£Q

x =
£
e¡j4 mxpR¢µ=¸R0

¤
M£P

y =
£
e¡j4 nyqR¢f =R0c

¤
N£Q

where  is the echo matrix, 

is the observation matrix: ,

.

Considering the targets present sparse point
scattering characteristic under high frequency
scattering in most practical application scenarios,
we present our method to improve the resolution
of radar imaging under sparse target constraint
using 2D deconvolution algorithm with low rank
sparsity echo matrix denoising.

3    2D Deconvolution with Echo Denoising

As we all know, the MF algorithm which is
based on the maximum signal to noise ratio is the

most stable and commonly used radar imaging
method. However, due to limitation of the syn-
thetic aperture and bandwidth, the standard MF
method suffers from relatively low resolution and
high sidelobes, especially under the requirements
of high resolution. The received echo after MF
from Eq. (5) can be obtained by:

MF =
H
x
~ ¤

y (6)

From the result of Eq. (6), the echo of the

surface target after MF can be described as the

sum of all the wave scattered at the points on the

surface grid, i.e.,

MF (x ; y) =
X
x 0

X
y0
~¾ (x 0; y0)Psf (x ¡ x 0; y¡ y0) (7)

where we define the PSF as:

Psf (x¡x 0; y¡y0)=h x (x) ; x (x 0)ih y (y) ; y (y0)i(8)

x (x) y (y)here,  and  represent the column of

matrix Ax and Ay at the grid (x, y).

We can find that Eq. (6) can be seen as the

2D convolution of the PSF and target backscat-

ter coefficients:

MF (x ; y) = ~¾ (x ; y) ¤ Psf (x ; y) +WMF (x ; y) (9)

Inspired by this, we can recovery the backs-

catter coefficients using deconvolution algorithm

to improve the imaging quality. Firstly, we should

analyze the characteristic of the PSF and its in-

fluence on the deconvolution result.
3.1  Analysis of PSF

The PSF can be evaluated as:

No. 3 Lu  Xinfei et al.: High-resolution Radar Imaging Using 2D Deconvolution with Sparse Echo Denoising 287



Psf (x ; y) ¼ e
¡j2

·
(M ¡ 1)R¢µ

¸R0
x +

(N ¡ 1)R¢f
R0c

y
¸

¢ sinc
µ

2MR¢µ

¸R0
x
¶

sinc
µ

2NR¢f
R0c

y
¶

(10)
We can calculate the 2D mainlobe width

which represents the radar imaging resolution as
follows:

½x =
¸R0

2MR¢µ
; ½y =

R0c
2NR¢f (11)

Psf (x ; y)

Eq. (9) indicates that the MF result can be
seen as the convolution result of backscatter coef-
ficients and . The PSF is characterized

by synthetic aperture and bandwidth, which has
strong low pass characteristic with low resolution
and high sidelobes as shown in Eq. (10) and Eq.
(11). For an isolated target scatter, imaging res-
ult after the MF output will be proportional to
the PSF, therefore the resolution of MF result is
limited and accompanied by low resolution and
high sidelobes. Inspired by above, we can restore
the high resolution backscatter coefficients in-
formation by deconvolution to remove the effect
of low pass characteristic of PSF.
3.2  2D deconvolution

As we have get 2D convolution form as Eq.
(9), here we consider to use the direct deconvolu-
tion algorithm to recovery target backscatter coef-
ficients. Firstly, we transform Eq. (9) into the
spatial frequency domain using 2D Fourier trans-
form as:

! = !¯ ! !+ ! (12)

!=Ff MFg ; !=F
n
~
o
; !=Ff sfg ;

!=Ff MFg
where, 

.

Theoretically, the target scattering informa-
tion could be restored by deconvolution as:

! = != ! (13)

1= !However,  will be very large in practice

at the outside of the mainlobe of PSF since the

low pass characteristic of the PSF, which results

in tremendous amplification of noise and obtains

valueless results. So the deconvolution processing

becomes an ill-posed inverse problem.
In order to alleviate the ill-posed problem, we

use Winner filtering algorithm and sparse low

rank matrix recovery to improve the quality of
imaging result.

The result after Winner filter algorithm can
be written as[14]:

~
! = !¯ !

¤

k !k2 +ªWW (!) =ª§§ (!)
(14)

ªWW (!) ª§§ (!)

ªWW (!) =ª§§ (!)

~

where  and  is the power spec-

tral density of  and . Eq. (14) will approach
Eq. (13) when the SNR is relatively high. What’s
more, Eq. (14) will attenuate the high frequen-
cies noise to alleviate the ill-posed problem under
low SNR. In experimental data processing, the

 is generally set according to the

experience value. We can get the scattering re-
flectivity  by 2D Inverse Fourier transform ac-
cording to Eq. (14).
3.3  Echo denoising by sparse low rank matrix re-
covery

We can prove that the echo matrix after MF
is sparse and low rank in Appendix A and by us-
ing this characteristic, the echo SNR can be im-
proved. Consider the problem of estimating a
sparse low rank matrix X from its noisy observa-
tion Y:

= + (15)

Define the sparse low rank matrix recovery

problem as:

min
;

° k k¤+ (1¡ °) k k1 subject to

= + ; = (16)

°

°

where  is the regularization parameter used to
balance the relative contribution between nuclear
norm and the 1-norm, which can control the de-
noising performance. In general, the denoising
threshold of  can be set as the 5%～10% of the
maximum singular value of Y.

By applying Augmented Lagrangian Method
(ALM), we can get the optimization problem:

F ( ; ; 1; 2; ¹)=° k k¤+ h 1; ¡ i

+
¹

2
k ¡ k2

F+(1¡°) k k1

+h 2; ¡ i+¹
2
k ¡ k2

F

(17)
And the update rules for solving this prob-

lem are as follows:
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(k+1) = S
Ã

+ (k)

2
+

(k)
1 +

(k)
2

2¹(k)
;

°

2¹(k)

!
(18)

(k+1) = soft
µ

1
¹(k)

(k)
2 ¡ (k+1);

1¡ °

¹(k)

¶
(19)

(k+1)
1 =

(k)
1 + ¹(k)

³
¡ (k+1)

´
(k+1)
2 =

(k)
2 + ¹(k)

³
(k+1) ¡ (k+1)

´
¹(k+1) = ¯¹(k); ¯ > 1

9>>>>=>>>>; (20)

S (¢; ¢)where,  is the singular value thresholding

function defined as:

S ( ; °)= soft ( ; °) T (21)

= T

soft (¢)
where,  is the Singular Value De-

composition (SVD) of ,  is the soft

thresholding function defined as:

soft (x ; °) = sign (x) ¢max fjx j ¡ °; 0g (22)

See Appendix B for the detailed derivation of

Eq. (18) and Eq. (19).

The flowchart of the proposed method is

shown in Fig. 2 by combining the sparse low rank

matrix recovery with the 2D deconvolution.

4    Simulation

The parameters in the simulation are given
in Tab. 1. In this experiment, we set four-point
targets, the imaging results are shown in Fig. 3.

As shown in Fig. 3(a), due to the limitation
of synthetic aperture and bandwidth, the MF
method suffers from relatively low resolution and
high sidelobes which make it difficult to distin-
guish between four-point targets even there is no
noise. Fig. 3(b)–Fig. 3(d) show the imaging res-
ults reconstructed by MF and proposed method
including the intermediate denoising results when
SNR = –15 dB. It can be clearly seen that the ef-
fect of denoising compared Fig. 3(c) with Fig.
3(a) and Fig. 3(b), the echo SNR is further im-
proved by the sparsity and low rank matrix re-
covery during the proposed intermediate denois-
ing procedure. The final imaging result is shown

in Fig. 3(d), from which we can see that the pro-
posed method has a better reconstruction preci-
sion with higher resolution imaging of four distin-
guishable point targets.

5    Experiment Results

¢

The experimental scene is shown in Fig. 4(a),
which is the same with the model in Fig. 1. The
radar system consists of a pair of horn antennas,
a turntable whose rotation angle can be precisely
controlled by the computer, and an Agilent VNA
N5224A which is used for transmitting and receiv-
ing the stepped-frequency signal with bandwidth
of 10 GHz from 28 GHz to 38 GHz and number of
frequencies N equals to 256 (Frequency interval

f is 40 MHz). Two kind of targets including
three 5-mm-diameter mental spheres and a pair of
scissors placed on a rotatory platform are used
here as shown in Fig. 4(b).

As we know, image entropy can be con-
sidered as a metric for measuring the smoothness
of the probability density function of image in-
tensities[15]. The imaging entropy is defined as:

E (I) = ¡
PX

p=1

QX
q=1

¯̄̄̄
I 2 (p; q)

s (I)

¯̄̄̄
ln

¯̄̄̄
I 2 (p; q)

s (I)

¯̄̄̄
(23)

s (I) =
XP

p=1

XQ

q=1
jI (p; q)j2where .

Tab. 1  Simulation parameters

Parameter Value Parameter Value

M 256 R 1 m

N 500 H 0.7 m

¢f 10 MHz W 0.04 m

¢µ 0.009° SNR –15 dB
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Fig. 2  The flowchart of the proposed method
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5.1  Three mental spheres
R=1 m; H=0:7 m;

W= 0:04 m 5±

¢µ = 0:01± M = 500

In this experiment, we set 

 and the total rotating angle is 

with an angle interval  ( ).

x y

Fig. 5 shows the results of the MF and our
proposed method for the mental spheres. The one-
dimensional  and  domain cross-section of the
target with red-dashed circle shown in Fig. 5 are
presented in Fig. 6, in which the red-dashed line
and blue line represent the result of MF and pro-
posed method. Clearly, the reconstruction result

x y

of proposed method has a narrower main-lobe and
lower side-lobe than MF and the sharpening ratio
almost reach 5.8 and 3.0 in  and  domain, re-
spectively.
5.2  Scissors

R = 0:876 m W= 0:04 m

360± M 720±

The parameters for this experiment are set as

follows, , . The total rotat-

ing angle is  with  equals to . Taking

into account the scintillation characteristics of the

target under large rotating angle, we divide the
rotating angle into 72 segments and each of the
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Fig. 3  Imaging results
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0± 5±part is with rotating angle from  to . The
proposed method is used to process the data for
each segment and the image fusion method is
used to merge the results of all segments.

Fig. 7 shows the imaging results of the scis-
sors reconstructed by MF and proposed method.
It can be seen from the results that the proposed
method has a high reconstruction precision with a
shaper shape of scissors.

The entropies of the imaging results by MF

and our proposed method are given in Tab. 2 to

quantitatively assess the performance. The pro-

posed method has a low entropy which means the

proposed method can improve the resolution and

verifies its superiority.

6    Conclusion

We introduce a robust deconvolution meth-

od with enhancing SNR technology to realize high

resolution radar imaging. Compared to other high
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Fig. 5  Imaging results of mental spheres
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Fig. 6  One-dimensional cut through the target with red dashed circle in Fig. 5
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Fig. 7  Imaging results of scissors
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resolution methods, our proposed method is

simple and robust. Although the signal model and

experiments are performed for turntable radar

situation with SF waveform, the method can be

directly generalized to other practical radar sys-

tems based on other types of signals.

Appendix A   Proof of the sparsity and low rank

characteristic

To prove the echo matrix after MF is sparse

and low rank, the following lemma is needed.

Lemma 1[16]: For matrix A and B, the ranks

of the product of A and B satisfy the inequality

below:

rank ( ) · min frank ( ) ; rank ( )g (A-1)

From Eq. (5) and Eq. (6),  we can see

that the echo matrix after MF can be written as:

MF = H
x x

~ T
y

¤
y (A-2)

~

MF

MF

We have supposed that the target has sparse

distribution, so the target backscatter coefficients

matrix  is sparse and low rank. Thus, matrix

 is also low rank according to lemma 1. The

sparsity of matrix  can be proved by Eq. (9)

obviously.
Appendix B   Derivation of Eq. (18) and Eq. (19)

For Eq. (18), the optimization problem can

be described as Eq. (B-1), and it has a closed-

form solution just as Eq. (18) according to Ref.

[13].

(k+1)

=arg min F
³

; (k);
(k)
1 ;

(k)
2 ; ¹(k)

´
=arg min

1
2

°°°°° ¡ 1
2

Ã
+ (k)+

(k)
1 +

(k)
2

¹(k)

!°°°°°
2

F

+
°

2¹(k)
k k¤ (B-1)

For Eq. (19), it is the same with Eq. (18),

which can written as

(k+1) = arg min F
³

(k+1); ;
(k)
1 ;

(k)
2 ; ¹(k)

´
= arg min

1
2

°°°°° ¡
Ã

(k)
2

¹(k)
¡ (k+1)

!°°°°°
2

F

+
1¡ °

¹(k)
k k1 (B-2)

It also has a closed-form solution as Eq. (19)
according to Ref. [17].
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